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Abstract

The PYTHIA program can be used to generate high-energy-physics ‘events’,
i.e. sets of outgoing particles produced in the interactions between two in-
coming particles. The objective is to provide as accurate as possible a
representation of event properties in a wide range of reactions, with empha-
sis on those where strong interactions play a role, directly or indirectly, and
therefore multihadronic final states are produced. The physics is then not
understood well enough to give an exact description; instead the program
has to be based on a combination of analytical results and various QCD-
based models. This physics input is summarized here, for areas such as hard
subprocesses, initial- and final-state parton showers, beam remnants and un-
derlying events, fragmentation and decays, and much more. Furthermore,
extensive information is provided on all program elements: subroutines and
functions, switches and parameters, and particle and process data. This
should allow the user to tailor the generation task to the topics of interest.

The code and further information may be found on the PYTHIA web page:
http://www.thep.lu.se/~torbjorn/Pythia.html .

The information in this edition of the manual refers to PYTHIA version
6.301, of 14 August 2003.

The official reference to the latest published version is
T. Sjostrand, P. Edén, C. Friberg, L. Lonnblad, G. Miu, S. Mrenna and
E. Norrbin, Computer Physics Commun. 135 (2001) 238.
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Preface

The PYTHIA program is frequently used for event generation in high-energy physics. The
emphasis is on multiparticle production in collisions between elementary particles. This
in particular means hard interactions in ete™, pp and ep colliders, although also other
applications are envisaged. The program is intended to generate complete events, in as
much detail as experimentally observable ones, within the bounds of our current under-
standing of the underlying physics. Many of the components of the program represents
original research, in the sense that models have been developed and implemented for a
number of aspects not covered by standard theory.

Historically, the family of event generators from the Lund group was begun with
JETSET in 1978. The PyTHIA program followed a few years later. With time, the two
programs so often had to be used together that it made sense to merge them. There-
fore PyTHIA 5.7 and JETSET 7.4 were the last versions to appear individually; as of
PyTHIA 6.1 all the code is collected under the PYTHIA heading. At the same time, the
SPYTHIA sideline of PYTHIA was reintegrated. Both programs have a long history, and
several manuals have come out. The most recent one is

T. Sjostrand, P. Edén, C. Friberg, L. Lonnblad, G. Miu, S. Mrenna and E. Norrbin,
Computer Physics Commun. 135 (2001) 238,

so please use this for all official references. Additionally remember to cite the original lit-
erature on the physics topics of particular relevance for your studies. (There is no reason
to omit references to good physics papers simply because some of their contents have also
been made available as program code.)

Event generators often have a reputation for being ‘black boxes’; if nothing else, this
report should provide you with a glimpse of what goes on inside the program. Some such
understanding may be of special interest for new users, who have no background in the
field. An attempt has been made to structure the report sufficiently well so that many of
the sections can be read independently of each other, so you can pick the sections that
interest you. We have tried to keep together the physics and the manual sections on
specific topics, where practicable.

A large number of persons should be thanked for their contributions. Bo Andersson
and Gosta Gustafson are the originators of the Lund model, and strongly influenced the
early development of the programs. Hans-Uno Bengtsson is the originator of the PyTHIA
program. Mats Bengtsson is the main author of the final-state parton-shower algorithm.
Patrik Edén has contributed an improved popcorn scenario for baryon production. Chris-
ter Friberg has helped develop the expanded photon physics machinery, Emanuel Norrbin
the new matrix-element matching of the final-state parton shower algorithm and the han-
dling of low-mass strings, and Gabriela Miu the matching of initial-state showers.

Further comments on the programs and smaller pieces of code have been obtained from
users too numerous to be mentioned here, but who are all gratefully acknowledged. To
write programs of this size and complexity would be impossible without a strong support
and user feedback. So, if you find errors, please let us know.

The moral responsibility for any remaining errors clearly rests with the authors. How-
ever, kindly note that this is a ‘University World’ product, distributed ‘as is’, free of
charge, without any binding guarantees. And always remember that the program does
not represent a dead collection of established truths, but rather one of many possible
approaches to the problem of multiparticle production in high-energy physics, at the
frontline of current research. Be critical!
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1 Introduction

Multiparticle production is the most characteristic feature of current high-energy physics.
Today, observed particle multiplicities are typically between ten and a hundred, and with
future machines this range will be extended upward. The bulk of the multiplicity is found
in jets, i.e. in collimated bunches of hadrons (or decay products of hadrons) produced
by the hadronization of partons, i.e. quarks and gluons. (For some applications it will
be convenient to extend the parton concept also to some non-coloured but showering
particles, such as electrons and photons.)

The Complexity of High-Energy Processes

To first approximation, all processes have a simple structure at the level of interactions
between the fundamental objects of nature, i.e. quarks, leptons and gauge bosons. For
instance, a lot can be understood about the structure of hadronic events at LEP just from
the ‘skeleton’ process ete™ — Z° — qq. Corrections to this picture can be subdivided,
arbitrarily but conveniently, into three main classes.

Firstly, there are bremsstrahlung-type modifications, i.e. the emission of additional
final-state particles by branchings such as e — ey or q — qg. Because of the large-
ness of the strong coupling constant «g, and because of the presence of the triple gluon
vertex, QCD emission off quarks and gluons is especially prolific. We therefore speak
about ‘parton showers’, wherein a single initial parton may give rise to a whole bunch of
partons in the final state. Also photon emission may give sizable effects in ete™ and ep
processes. The bulk of the bremsstrahlung corrections are universal, i.e. do not depend
on the details of the process studied, but only on one or a few key numbers, such as the
momentum transfer scale of the process. Such universal corrections may be included to
arbitrarily high orders, using a probabilistic language. Alternatively, exact calculations
of bremsstrahlung corrections may be carried out order by order in perturbation the-
ory, but rapidly the calculations then become prohibitively complicated and the answers
correspondingly lengthy:.

Secondly, we have ‘true’ higher-order corrections, which involve a combination of loop
graphs and the soft parts of the bremsstrahlung graphs above, a combination needed to
cancel some divergences. In a complete description it is therefore not possible to consider
bremsstrahlung separately, as assumed here. The necessary perturbative calculations are
usually very difficult; only rarely have results been presented that include more than one
non-‘trivial’ order, i.e. more than one loop. As above, answers are usually very lengthy,
but some results are sufficiently simple to be generally known and used, such as the
running of ag, or the correction factor 1 + /7 + -+ in the partial widths of Z° — qq
decay channels. For high-precision studies it is imperative to take into account the results
of loop calculations, but usually effects are minor for the qualitative aspects of high-energy
processes.

Thirdly, quarks and gluons are confined. In the two points above, we have used a
perturbative language to describe the short-distance interactions of quarks, leptons and
gauge bosons. For leptons and colourless bosons this language is sufficient. However, for
quarks and gluons it must be complemented with the structure of incoming hadrons, and
a picture for the hadronization process, wherein the coloured partons are transformed
into jets of colourless hadrons, photons and leptons. The hadronization can be further
subdivided into fragmentation and decays, where the former describes the way the creation
of new quark-antiquark pairs can break up a high-mass system into lower-mass ones,
ultimately hadrons. (The word ‘fragmentation’ is also sometimes used in a broader sense,
but we will here use it with this specific meaning.) This process is still not yet understood
from first principles, but has to be based on models. In one sense, hadronization effects
are overwhelmingly large, since this is where the bulk of the multiplicity comes from. In



another sense, the overall energy flow of a high-energy event is mainly determined by the
perturbative processes, with only a minor additional smearing caused by the hadronization
step. One may therefore pick different levels of ambition, but in general detailed studies
require a detailed modelling of the hadronization process.

The simple structure that we started out with has now become considerably more
complex — instead of maybe two final-state partons we have a hundred final particles.
The original physics is not gone, but the skeleton process has been dressed up and is no
longer directly visible. A direct comparison between theory and experiment is therefore
complicated at best, and impossible at worst.

Event Generators

It is here that event generators come to the rescue. In an event generator, the objective
striven for is to use computers to generate events as detailed as could be observed by a
perfect detector. This is not done in one step, but rather by ‘factorizing’ the full prob-
lem into a number of components, each of which can be handled reasonably accurately.
Basically, this means that the hard process is used as input to generate bremsstrahlung
corrections, and that the result of this exercise is thereafter left to hadronize. This sounds
a bit easier than it really is — else this report would be a lot thinner. However, the basic
idea is there: if the full problem is too complicated to be solved in one go, try to subdivide
it into smaller tasks of manageable proportions. In the actual generation procedure, most
steps therefore involve the branching of one object into two, or at least into a very small
number, with the daughters free to branch in their turn. A lot of book-keeping is involved,
but much is of a repetitive nature, and can therefore be left for the computer to handle.
As the name indicates, the output of an event generator should be in the form of
‘events’, with the same average behaviour and the same fluctuations as real data. In
the data, fluctuations arise from the quantum mechanics of the underlying theory. In
generators, Monte Carlo techniques are used to select all relevant variables according to
the desired probability distributions, and thereby ensure randomness in the final events.
Clearly some loss of information is entailed: quantum mechanics is based on amplitudes,
not probabilities. However, only very rarely do (known) interference phenomena appear
that cannot be cast in a probabilistic language. This is therefore not a more restraining
approximation than many others.
Once there, an event generator can be used in many different ways. The five main
applications are probably the following:
e To give physicists a feeling for the kind of events one may expect/hope to find, and
at what rates.
e As a help in the planning of a new detector, so that detector performance is opti-
mized, within other constraints, for the study of interesting physics scenarios.
e As a tool for devising the analysis strategies that should be used on real data, so
that signal-to-background conditions are optimized.
e As a method for estimating detector acceptance corrections that have to be applied
to raw data, in order to extract the ‘true’ physics signal.
e As a convenient framework within which to interpret the observed phenomena in
terms of a more fundamental underlying theory (usually the Standard Model).
Where does a generator fit into the overall analysis chain of an experiment? In ‘real
life’, the machine produces interactions. These events are observed by detectors, and the
interesting ones are written to tape by the data acquisition system. Afterward the events
may be reconstructed, i.e. the electronics signals (from wire chambers, calorimeters, and
all the rest) may be translated into a deduced setup of charged tracks or neutral energy
depositions, in the best of worlds with full knowledge of momenta and particle species.
Based on this cleaned-up information, one may proceed with the physics analysis. In the
Monte Carlo world, the role of the machine, namely to produce events, is taken by the



event generators described in this report. The behaviour of the detectors — how particles
produced by the event generator traverse the detector, spiral in magnetic fields, shower
in calorimeters, or sneak out through cracks, etc. — is simulated in programs such as
GEANT [Bru89]. Traditionally, this latter activity is called event simulation, which is
somewhat unfortunate since the same words could equally well be applied to what, here,
we call event generation. A more appropriate term is detector simulation. Ideally, the
output of this simulation has exactly the same format as the real data recorded by the
detector, and can therefore be put through the same event reconstruction and physics
analysis chain, except that here we know what the ‘right answer’ should be, and so can
see how well we are doing.

Since the full chain of detector simulation and event reconstruction is very time-
consuming, one often does ‘quick and dirty’ studies in which these steps are skipped
entirely, or at least replaced by very simplified procedures which only take into account
the geometric acceptance of the detector and other trivial effects. One may then use the
output of the event generator directly in the physics studies.

There are still many holes in our understanding of the full event structure, despite
an impressive amount of work and detailed calculations. To put together a generator
therefore involves making a choice on what to include, and how to include it. At best,
the spread between generators can be used to give some impression of the uncertainties
involved. A multitude of approximations will be discussed in the main part of this report,
but already here is should be noted that many major approximations are related to the
almost complete neglect of the second point above, i.e. of the non-‘trivial’ higher-order
effects. It can therefore only be hoped that the ‘trivial’ higher order parts give the bulk of
the experimental behaviour. By and large, this seems to be the case; for e"e™ annihilation
it even turns out to be a very good approximation.

The necessity to make compromises has one major implication: to write a good event
generator is an art, not an exact science. It is therefore essential not to blindly trust
the results of any single event generator, but always to make several cross-checks. In
addition, with computer programs of tens of thousands of lines, the question is not whether
bugs exist, but how many there are, and how critical their positions. Further, an event
generator cannot be thought of as all-powerful, or able to give intelligent answers to ill-
posed questions; sound judgement and some understanding of a generator are necessary
prerequisites for successful use. In spite of these limitations, the event generator approach
is the most powerful tool at our disposal if we wish to gain a detailed and realistic
understanding of physics at current or future high-energy colliders.

The Origins of the JETSET and PYTHIA Programs

Over the years, many event generators have appeared. Surveys of generators for ete”
physics in general and LEP in particular may be found in [Kle89, Sj689, Kno96, Lén96],
for high-energy hadron-hadron (pp) physics in [Ans90, Sjo92, Kno93, LHC00], and for
ep physics in [HER92, HER99]. We refer the reader to those for additional details and
references. In this particular report, the two closely connected programs JETSET and
PyTHIA, now merged under the PYTHIA label, will be described.

JETSET has its roots in the efforts of the Lund group to understand the hadroniza-
tion process, starting in the late seventies [And83]. The so-called string fragmentation
model was developed as an explicit and detailed framework, within which the long-range
confinement forces are allowed to distribute the energies and flavours of a parton config-
uration among a collection of primary hadrons, which subsequently may decay further.
This model, known as the Lund string model, or ‘Lund’ for short, contained a number of
specific predictions, which were confirmed by data from PETRA and PEP, whence the
model gained a widespread acceptance. The Lund string model is still today the most
elaborate and widely used fragmentation model at our disposal. It remains at the heart



of the PYTHIA program.

In order to predict the shape of events at PETRA /PEP, and to study the fragmentation
process in detail, it was necessary to start out from the partonic configurations that
were to fragment. The generation of complete e™e™ hadronic events was therefore added,
originally based on simple v exchange and first-order QCD matrix elements, later extended
to full 4*/Z° exchange with first-order initial-state QED radiation and second-order QCD
matrix elements. A number of utility routines were also provided early on, for everything
from event listing to jet finding.

By the mid-eighties it was clear that the matrix-element approach had reached the
limit of its usefulness, in the sense that it could not fully describe the multijet topologies of
the data. (Later on, the use of optimized perturbation theory was to lead to a resurgence
of the matrix-element approach, but only for specific applications.) Therefore a parton-
shower description was developed [Ben87al as an alternative to the matrix-element one.
The combination of parton showers and string fragmentation has been very successful,
and forms the main approach to the description of hadronic Z° events.

In recent years, the JETSET part of the code has been a fairly stable product, covering
the four main areas of fragmentation, final-state parton showers, eTe™ event generation
and general utilities.

The successes of string fragmentation in eTe™ made it interesting to try to extend this
framework to other processes, and explore possible physics consequences. Therefore a
number of other programs were written, which combined a process-specific description of
the hard interactions with the general fragmentation framework of JETSET. The PYTHIA
program evolved out of early studies on fixed-target proton—proton processes, addressed
mainly at issues related to string drawing.

With time, the interest shifted towards higher energies, first to the SPS pp collider,
and later to the Tevatron, SSC and LHC, in the context of a number of workshops in
the USA and Europe. Parton showers were added, for final-state radiation by making
use of the JETSET routine, for initial-state one by the development of the concept of
‘backwards evolution’, specifically for PyTHIA [Sj685]. Also a framework was developed
for minimum-bias and underlying events [Sj687a].

Another main change was the introduction of an increasing number of hard processes,
within the Standard Model and beyond. A special emphasis was put on the search for
the Standard Model Higgs, in different mass ranges and in different channels, with due
respect to possible background processes.

The bulk of the machinery developed for hard processes actually depended little on the
choice of initial state, as long as the appropriate parton distributions were there for the
incoming partons and particles. It therefore made sense to extend the program from being
only a pp generator to working also for ee™ and ep. This process was only completed in
1991, again spurred on by physics workshop activities. Currently PyTHIA should therefore
work equally well for a selection of different possible incoming beam particles.

An effort independent of the Lund group activities got going to include supersymmetric
event simulation in PYTHIA. This resulted in the SPYTHIA program.

While JETSET was independent of PyYTHIA until 1996, their ties had grown much
stronger over the years, and the border-line between the two programs had become more
and more artificial. It was therefore decided to merge the two, and also include the
SPYTHIA extensions, starting from PyYTHIA 6.1. The different origins in part still are
reflected in this manual, but the strive is towards a seamless merger.

The tasks of including new processes, and of improving the simulation of parton show-
ers and other aspects of already present processes, are never-ending. Work therefore
continues apace.



About this Report

As we see, JETSET and PYTHIA started out as very ideologically motivated programs, de-
veloped to study specific physics questions in enough detail that explicit predictions could
be made for experimental quantities. As it was recognized that experimental imperfec-
tions could distort the basic predictions, the programs were made available for general use
by experimentalists. It thus became feasible to explore the models in more detail than
would otherwise have been possible. As time went by, the emphasis came to shift some-
what, away from the original strong coupling to a specific fragmentation model, towards a
description of high-energy multiparticle production processes in general. Correspondingly,
the use expanded from being one of just comparing data with specific model predictions,
to one of extensive use for the understanding of detector performance, for the deriva-
tion of acceptance correction factors, for the prediction of physics at future high-energy
accelerators, and for the design of related detectors.

While the ideology may be less apparent, it is still there, however. This is not some-
thing unique to the programs discussed here, but inherent in any event generator, or at
least any generator that attempts to go beyond the simple parton level skeleton descrip-
tion of a hard process. Do not accept the myth that everything available in Monte Carlo
form represents ages-old common knowledge, tested and true. Ideology is present by
commissions or omissions in any number of details. A programs like PYTHIA represents
a major amount of original physics research, often on complicated topics where no simple
answers are available. As a (potential) program user you must be aware of this, so that
you can form your own opinion, not just about what to trust and what not to trust, but
also how much to trust a given prediction, i.e. how uncertain it is likely to be. PYTHIA
is particularly well endowed in this respect, since a number of publications exist where
most of the relevant physics is explained in considerable detail. In fact, the problem may
rather be the opposite, to find the relevant information among all the possible places.
One main objective of the current report is therefore to collect much of this information
in one single place. Not all the material found in specialized papers is reproduced, by a
wide margin, but at least enough should be found here to understand the general picture
and to know where to go for details.

The current report is therefore intended to update and extend the previous round of
published physics descriptions and program manuals [Sj686, Sj687, Ben87, Sj694, Mre97,
Sjo01]. Make all references to the most recent published one in [Sj601]. Further speci-
fication could include a statement of the type ‘We use PYTHIA version X.xxx. (If you
are a I{TEX fan, you may want to know that the program name in this report has been
generated by the command \textsc{Pythia}.) Kindly do not refer to PYTHIA as ‘un-
published’, ‘private communication’ or ‘in preparation’. such phrases are incorrect and
only create unnecessary confusion.

In addition, remember that many of the individual physics components are docu-
mented in separate publications. If some of these contain ideas that are useful to you,
there is every reason to cite them. A reasonable selection would vary as a function of the
physics you are studying. The criterion for which to pick should be simple: imagine that
a Monte Carlo implementation had not been available. Would you then have cited a given
paper on the grounds of its physics contents alone? If so, do not punish the extra effort
of turning these ideas into publicly available software. (Monte Carlo manuals are good
for nothing in the eyes of many theorists, so often only the acceptance of ‘mainstream’
publications counts.) Here follows a list of some main areas where the PYTHIA programs
contain original research:

The string fragmentation model [And83, And98].

The string effect [And80].

Baryon production (diquark/popcorn) [And82, And85, Edé97].
Small-mass string fragmentation [Nor98].



Fragmentation of multiparton systems [Sjo84].

Colour rearrangement [Sj694a] and Bose-Einstein effects [Lon95].
Fragmentation effects on oy determinations [Sj684a].

Initial-state parton showers [Sj685, Miu99].

Final-state parton showers [Ben87a, Nor(01].

Photon radiation from quarks [Sj692¢]

Deeply Inelastic Scattering [And81la, Ben8§|.

Photoproduction [Sch93a], vy [Sch94a] and vy*p/v*v/~*y* [Fri00] physics.
Parton distributions of the photon [Sch95, Sch96].

Colour flow in hard scatterings [Ben84].

Elastic and diffractive cross sections [Sch94].

Minijets (multiple parton—parton interactions) [Sjo87al.
Rapidity gaps [Dok92].

Jet clustering in &, [Sjo83].

In addition to a physics survey, the current report also contains a complete manual
for the program. Such manuals have always been updated and distributed jointly with
the programs, but have grown in size with time. A word of warning may therefore be in
place. The program description is fairly lengthy, and certainly could not be absorbed in
one sitting. This is not even necessary, since all switches and parameters are provided
with sensible default values, based on our best understanding (of the physics, and of what
you expect to happen if you do not specify any options). As a new user, you can therefore
disregard all the fancy options, and just run the program with a minimum ado. Later
on, as you gain experience, the options that seem useful can be tried out. No single user
is ever likely to find need for more than a fraction of the total number of possibilities
available, yet many of them have been added to meet specific user requests.

In some instances, not even this report will provide you with all the information you
desire. You may wish to find out about recent versions of the program, know about related
software, pick up a few sample main programs to get going, or get hold of related physics
papers. Some such material can be found on the PYTHIA web page:

http://www.thep.lu.se/~torbjorn/Pythia.html .

Disclaimer

At all times it should be remembered that this is not a commercial product, developed
and supported by professionals. Instead it is a ‘University World” product, developed by
a very few physicists (mainly the current first author) originally for their own needs, and
supplied to other physicists on an ‘as-is’ basis, free of charge. No guarantees are therefore
given for the proper functioning of the program, nor for the validity of physics results.
In the end, it is always up to you to decide for yourself whether to trust a given result
or not. Usually this requires comparison either with analytical results or with results of
other programs, or with both. Even this is not necessarily foolproof: for instance, if an
error is made in the calculation of a matrix element for a given process, this error will be
propagated both into the analytical results based on the original calculation and into all
the event generators which subsequently make use of the published formulae. In the end,
there is no substitute for a sound physics judgement.

This does not mean that you are all on your own, with a program nobody feels re-
sponsible for. Attempts are made to check processes as carefully as possible, to write
programs that do not invite unnecessary errors, and to provide a detailed and accurate
documentation. All of this while maintaining the full power and flexibility, of course,
since the physics must always take precedence in any conflict of interests. If neverthe-
less any errors or unclear statements are found, please do communicate them to e-mail
torbjorn@thep.lu.se, or to another person in charge. For instance, all questions on



the supersymmetric and technicolor machinery are better directed to mrenna@fnal.gov.
Every attempt will be made to solve problems as soon as is reasonably possible, given
that this support is by a few persons, who mainly have other responsibilities.

However, in order to make debugging at all possible, we request that any sample
code you want to submit as evidence be completely self-contained, and peeled off from all
irrelevant aspects. Use simple write statements or the PYTHIA histogramming routines to
make your point. Chances are that, if the error cannot be reproduced by fifty lines of code,
in a main program linked only to PYTHIA, the problem is sitting elsewhere. Numerous
errors have been caused by linking to other (flawed) libraries, e.g. collaboration-specific
frameworks for running PYTHIA. Then you should put the blame elsewhere.

Appendix: The Historical Pythia

The ‘PyTHIA’ label may need some explanation.

The myth tells how Apollon, the God of Wisdom, killed the powerful dragon-like
monster Python, close to the village of Delphi in Greece. To commemorate this victory,
Apollon founded the Pythic Oracle in Delphi, on the slopes of Mount Parnassos. Here
men could come to learn the will of the Gods and the course of the future. The oracle
plays an important role in many of the other Greek myths, such as those of Heracles and
of King Oedipus.

Questions were to be put to the Pythia, the ‘Priestess’ or ‘Prophetess’ of the Oracle. In
fact, she was a local woman, usually a young maiden, of no particular religious schooling.
Seated on a tripod, she inhaled the obnoxious vapours that seeped up through a crevice in
the ground. This brought her to a trance-like state, in which she would scream seemingly
random words and sounds. It was the task of the professional priests in Delphi to record
those utterings and edit them into the official Oracle prophecies, which often took the
form of poems in perfect hexameter. In fact, even these edited replies were often less than
easy to interpret. The Pythic oracle acquired a reputation for ambiguous answers.

The Oracle existed already at the beginning of the historical era in Greece, and was
universally recognized as the foremost religious seat. Individuals and city states came to
consult, on everything from cures for childlessness to matters of war. Lavish gifts allowed
the temple area to be built and decorated. Many states supplied their own treasury halls,
where especially beautiful gifts were on display. Sideshows included the Omphalos, a
stone reputedly marking the centre of the Earth, and the Pythic games, second only to
the Olympic ones in importance.

Strife inside Greece eventually led to a decline in the power of the Oracle. A serious
blow was dealt when the Oracle of Zeus Ammon (see below) declared Alexander the Great
to be the son of Zeus. The Pythic Oracle lived on, however, and was only closed by a
Roman Imperial decree in 390 AD, at a time when Christianity was ruthlessly destroying
any religious opposition. Pythia then had been at the service of man and Gods for a
millennium and a half.

The role of the Pythic Oracle prophecies on the course of history is nowhere better
described than in ‘The Histories’ by Herodotus [HerBc]|, the classical and captivating
description of the Ancient World at the time of the Great War between Greeks and
Persians. Especially famous is the episode with King Croisus of Lydia. Contemplating a
war against the upstart Persian Empire, he resolves to ask an oracle what the outcome
of a potential battle would be. However, to have some guarantee for the veracity of any
prophecy, he decides to send embassies to all the renowned oracles of the known World.
The messengers are instructed to inquire the various divinities, on the hundredth day
after their departure, what King Croisus is doing at that very moment. From the Pythia
the messengers bring back the reply

I know the number of grains of sand as well as the expanse of the sea,
And I comprehend the dumb and hear him who does not speak,



There came to my mind the smell of the hard-shelled turtle,
Boiled in copper together with the lamb,
Wiath copper below and copper above.

The veracity of the Pythia is thus established by the crafty ruler, who had waited until
the appointed day, slaughtered a turtle and a lamb, and boiled them together in a copper
cauldron with a copper lid. Also the Oracle of Zeus Ammon in the Libyan desert is able
to give a correct reply (lost to posterity), while all others fail. King Croisus now sends a
second embassy to Delphi, inquiring after the outcome of a battle against the Persians.
The Pythia answers

If Croisus passes over the Halys he will dissolve a great Empire.

Taking this to mean he would win, the King collects his army and crosses the border river,
only to suffer a crushing defeat and see his Kingdom conquered. When the victorious King
Cyrus allows Croisus to send an embassy to upbraid the Oracle, the God Apollon answers
through his Prophetess that he has correctly predicted the destruction of a great empire
— Croisus’ own — and that he cannot be held responsible if people choose to interpret
the Oracle answers to their own liking.

The history of the PYTHIA program is neither as long nor as dignified as that of
its eponym. However, some points of contact exist. You must be very careful when
you formulate the questions: any ambiguities will corrupt the reply you get. And you
must be even more careful not to misinterpret the answers; in particular not to pick the
interpretation that suits you before considering the alternatives. Finally, even a perfect
God has servants that are only human: a priest might mishear the screams of the Pythia
and therefore produce an erroneous oracle reply; the current author might unwittingly let
a bug free in the program PYTHIA.



2 Physics Overview

In this section we will try to give an overview of the main physics features of PYTHIA, and
also to introduce some terminology. The details will be discussed in subsequent sections.

For the description of a typical high-energy event, an event generator should contain
a simulation of several physics aspects. If we try to follow the evolution of an event in
some semblance of a time order, one may arrange these aspects as follows:

1. Initially two beam particles are coming in towards each other. Normally each par-
ticle is characterized by a set of parton distributions, which defines the partonic
substructure in terms of flavour composition and energy sharing.

2. One shower initiator parton from each beam starts off a sequence of branchings,
such as q — qg, which build up an initial-state shower.

3. One incoming parton from each of the two showers enters the hard process, where
then a number of outgoing partons are produced, usually two. It is the nature of
this process that determines the main characteristics of the event.

4. The hard process may produce a set of short-lived resonances, like the Z°/W= gauge
bosons, whose decay to normal partons has to be considered in close association with
the hard process itself.

5. The outgoing partons may branch, just like the incoming did, to build up final-state
showers.

6. In addition to the hard process considered above, further semihard interactions may
occur between the other partons of two incoming hadrons.

7. When a shower initiator is taken out of a beam particle, a beam remnant is left
behind. This remnant may have an internal structure, and a net colour charge that
relates it to the rest of the final state.

8. The QCD confinement mechanism ensures that the outgoing quarks and gluons are
not observable, but instead fragment to colour neutral hadrons.

9. Normally the fragmentation mechanism can be seen as occurring in a set of separate
colour singlet subsystems, but interconnection effects such as colour rearrangement
or Bose-Einstein may complicate the picture.

10. Many of the produced hadrons are unstable and decay further.

Conventionally, only quarks and gluons are counted as partons, while leptons and
photons are not. If pushed ad absurdum this may lead to some unwieldy terminology. We
will therefore, where it does not matter, speak of an electron or a photon in the ‘partonic’
substructure of an electron, lump branchings e — ey together with other ‘parton shower’
branchings such as q — qg, and so on. With this notation, the division into the above
ten points applies equally well to an interaction between two leptons, between a lepton
and a hadron, and between two hadrons.

In the following sections, we will survey the above ten aspects, not in the same order
as given here, but rather in the order in which they appear in the program execution, i.e.
starting with the hard process.

2.1 Hard Processes and Parton Distributions

In the original JETSET code, only two hard processes are available. The first and main
one is ete™ — v*/Z% — qq. Here the ‘*’ of 4* is used to denote that the photon must be
off the mass shell. The distinction is of some importance, since a photon on the mass shell
cannot decay. Of course also the Z° can be off the mass shell, but here the distinction is
less relevant (strictly speaking, a Z° is always off the mass shell). In the following we may
not always use “*’ consistently, but the rule of thumb is to use a ‘*’ only when a process is
not kinematically possible for a particle of nominal mass. The quark g in the final state
of ete™ — ~*/Z° — qq may be u, d, s, ¢, b or t; the flavour in each event is picked at



random, according to the relative couplings, evaluated at the hadronic c.m. energy. Also
the angular distribution of the final qq pair is included. No parton-distribution functions
are needed.

The other original JETSET process is a routine to generate ggg and ygg final states,
as expected in onium 17~ decays such as T. Given the large top mass, toponium de-
cays weakly much too fast for these processes to be of any interest, so therefore no new
applications are expected.

2.1.1 Hard Processes

The current PYTHIA contains a much richer selection, with around 240 different hard

processes. These may be classified in many different ways.

One is according to the number of final-state objects: we speak of ‘2 — 1’ processes,
‘2 — 2’ ones, ‘2 — 3’ ones, etc. This aspect is very relevant from a programming point
of view: the more particles in the final state, the more complicated the phase space and
therefore the whole generation procedure. In fact, PYTHIA is optimized for 2 — 1 and
2 — 2 processes. There is currently no generic treatment of processes with three or more
particles in the final state, but rather a few different machineries, each tailored to the
pole structure of a specific class of graphs.

Another classification is according to the physics scenario. This will be the main theme
of section 8. The following major groups may be distinguished:

e Hard QCD processes, e.g. qg — qg.

e Soft QCD processes, such as diffractive and elastic scattering, and minimum-bias
events. Hidden in this class is also process 96, which is used internally for the
merging of soft and hard physics, and for the generation of multiple interactions.
Heavy-flavour production, both open and hidden, e.g. gg — tt and gg — J/v¥g.
Prompt-photon production, e.g. qg — q7.

Photon-induced processes, e.g. vg — qq.

Deeply Inelastic Scattering, e.g. qf — gf.

W /Z production, such as the efe™ — v*/Z°% or qq — WTW~.

Standard model Higgs production, where the Higgs is reasonably light and narrow,

and can therefore still be considered as a resonance.

e Gauge boson scattering processes, such as WW — WW, when the Standard Model
Higgs is so heavy and broad that resonant and non-resonant contributions have to
be considered together.

e Non-standard Higgs particle production, within the framework of a two-Higgs-
doublet scenario with three neutral (h®, H® and A°) and two charged (H*) Higgs
states. Normally associated with SUSY (see below), but does not have to be.

e Production of new gauge bosons, such as a Z';, W and R (a horizontal boson,
coupling between generations).

e Technicolor production, as an alternative scenario to the standard picture of elec-
troweak symmetry breaking by a fundamental Higgs.

e Compositeness is a possibility not only in the Higgs sector, but may also apply to
fermions, e.g. giving d* and u* production. At energies below the threshold for new
particle production, contact interactions may still modify the standard behaviour.

o Left—right symmetric models give rise to doubly charged Higgs states, in fact one
set belonging to the left and one to the right SU(2) gauge group. Decays involve
right-handed W’s and neutrinos.

e Leptoquark (Lq) production is encountered in some beyond-the-standard-model sce-
narios.

e Supersymmetry (SUSY) is probably the favourite scenario for physics beyond the
standard model. A rich set of processes are allowed, already if one obeys R-parity
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conservation, and even more so if one does not. The supersymmetric machinery
and process selection is inherited from SPYTHIA [Mre97], however with many im-
provements in the event generation chain. Many different SUSY scenarios have been
proposed, and the program is flexible enough to allow input from several of these,
in addition to the ones provided internally.

e The possibility of extra dimensions at low energies has been a topic of much study in
recent years, but has still not settled down to some standard scenarios. Its inclusion
into PYTHIA is also only in a very first stage.

This is by no means a survey of all interesting physics. Also, within the scenarios studied,
not all contributing graphs have always been included, but only the more important
and /or more interesting ones. In many cases, various approximations are involved in the
matrix elements coded.

2.1.2 Resonance Decays

As we noted above, the bulk of the processes above are of the 2 — 2 kind, with very
few leading to the production of more than two final-state particles. This may be seen
as a major limitation, and indeed is so at times. However, often one can come quite far
with only one or two particles in the final state, since showers will add the required extra
activity. The classification may also be misleading at times, since an s-channel resonance
is considered as a single particle, even if it is assumed always to decay into two final-state
particles. Thus the process ete™ — WTW™ — qq} q2q, is classified as 2 — 2, although
the decay treatment of the W pair includes the full 2 — 4 matrix elements (in the doubly
resonant approximation, i.e. excluding interference with non-WW four-fermion graphs).

Particles which admit this close connection between the hard process and the subse-
quent evolution are collectively called resonances in this manual. It includes all particles
in mass above the b quark system, such as t, Z°, W*, h°, supersymmetric particles, and
many more. Typically their decays are given by electroweak physics, or physics beyond
the Standard Model. What characterizes a (PYTHIA) resonance is that partial widths
and branching ratios can be calculated dynamically, as a function of the actual mass
of a particle. Therefore not only do branching ratios change between an h° of nominal
mass 100 GeV and one of 200 GeV, but also for a Higgs of nominal mass 200 GeV, the
branching ratios would change between an actual mass of 190 GeV and 210 GeV, say.
This is particularly relevant for reasonably broad resonances, and in threshold regions.
For an approach like this to work, it is clearly necessary to have perturbative expressions
available for all partial widths.

Decay chains can become quite lengthy, e.g. for supersymmetric processes, but follow
a straight perturbative pattern. If the simulation is restricted to only some set of decays,
the corresponding cross section reduction can easily be calculated. (Except in some rare
cases where a nontrivial threshold behaviour could complicate matters.) It is therefore
standard in PYTHIA to quote cross sections with such reductions already included. Note
that the branching ratios of a particle is affected also by restrictions made in the secondary
or subsequent decays. For instance, the branching ratio of h® — WTW~, relative to
h? — Z°7Z° and other channels, is changed if the allowed W decays are restricted.

The decay products of resonances are typically quarks, leptons, or other resonances,
e.g. W — qq or h® — W*W~. Ordinary hadrons are not produced in these decays,
but only in subsequent hadronization steps. In decays to quarks, parton showers are
automatically added to give a more realistic multijet structure, and one may also allow
photon emission off leptons. If the decay products in turn are resonances, further decays
are necessary. Often spin information is available in resonance decay matrix elements.
This means that the angular orientations in the two decays of a WTW™ pair are properly
correlated. In other cases, the information is not available, and then resonances decay
isotropically.
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Of course, the above ‘resonance’ terminology is arbitrary. A p, for instance, could
also be called a resonance, but not in the above sense. The width is not perturbatively
calculable, it decays to hadrons by strong interactions, and so on. From a practical point
of view, the main dividing line is that the values of — or a change in — branching
ratios cannot affect the cross section of a process. For instance, if one wanted to consider
the decay Z° — c¢, with a D meson producing a lepton, not only would there then
be the problem of different leptonic branching ratios for different D’s (which means that
fragmentation and decay treatments would no longer decouple), but also that of additional
¢¢ pair production in parton-shower evolution, at a rate that is unknown beforehand. In
practice, it is therefore next to impossible to force D decay modes in a consistent manner.

2.1.3 Parton Distributions

The cross section for a process ij — k is given by

oy = [ dan [ des fl(0) F2w2) 1)

Here 6 is the cross section for the hard partonic process, as codified in the matrix elements
for each specific process. For processes with many particles in the final state it would
be replaced by an integral over the allowed final-state phase space. The f?(z) are the
parton-distribution functions, which describe the probability to find a parton ¢ inside
beam particle a, with parton i carrying a fraction x of the total @ momentum. Actually,
parton distributions also depend on some momentum scale Q2 that characterizes the hard
process.

Parton distributions are most familiar for hadrons, such as the proton. Hadrons are
inherently composite objects, made up of quarks and gluons. Since we do not understand
QCD, a derivation from first principles of hadron parton distributions does not yet exist,
although some progress is being made in lattice QCD studies. It is therefore necessary
to rely on parameterizations, where experimental data are used in conjunction with the
evolution equations for the Q? dependence, to pin down the parton distributions. Several
different groups have therefore produced their own fits, based on slightly different sets of
data, and with some variation in the theoretical assumptions.

Also for fundamental particles, such as the electron, is it convenient to introduce parton
distributions. The function f$(z) thus parameterizes the probability that the electron that
takes part in the hard process retains a fraction x of the original energy, the rest being
radiated (into photons) in the initial state. Of course, such radiation could equally well be
made part of the hard interaction, but the parton-distribution approach usually is much
more convenient. If need be, a description with fundamental electrons is recovered for
the choice f¢(z,Q?*) = d(x — 1). Note that, contrary to the proton case, electron parton
distributions are calculable from first principles, and reduce to the § function above for
Q? — 0.

The electron may also contain photons, and the photon may in its turn contain quarks
and gluons. The internal structure of the photon is a bit of a problem, since the photon
contains a point-like part, which is perturbatively calculable, and a resolved part (with
further subdivisions), which is not. Normally, the photon parton distributions are there-
fore parameterized, just as the hadron ones. Since the electron ultimately contains quarks
and gluons, hard QCD processes like qg — qg therefore not only appear in pp collisions,
but also in ep ones (‘resolved photoproduction’) and in ete™ ones (‘doubly resolved 2y
events’). The parton distribution function approach here makes it much easier to reuse
one and the same hard process in different contexts.

There is also another kind of possible generalization. The two processes qq — v*/Z°,
studied in hadron colliders, and ete™ — ~v*/Z° studied in e*e™ colliders, are really special
cases of a common process, ff — 7*/Z° where f denotes a fundamental fermion, i.e. a
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quark, lepton or neutrino. The whole structure is therefore only coded once, and then
slightly different couplings and colour prefactors are used, depending on the initial state
considered. Usually the interesting cross section is a sum over several different initial
states, e.g. ul — */Z° and dd — ~*/Z° in a hadron collider. This kind of summation is
always implicitly done, even when not explicitly mentioned in the text.

2.2 Initial- and Final-State Radiation

In every process that contains coloured and/or charged objects in the initial or final state,
gluon and/or photon radiation may give large corrections to the overall topology of events.
Starting from a basic 2 — 2 process, this kind of corrections will generate 2 — 3, 2 — 4,
and so on, final-state topologies. As the available energies are increased, hard emission
of this kind is increasingly important, relative to fragmentation, in determining the event
structure.

Two traditional approaches exist to the modelling of perturbative corrections. One is
the matrix-element method, in which Feynman diagrams are calculated, order by order.
In principle, this is the correct approach, which takes into account exact kinematics,
and the full interference and helicity structure. The only problem is that calculations
become increasingly difficult in higher orders, in particular for the loop graphs. Only in
exceptional cases have therefore more than one loop been calculated in full, and often
we do not have any loop corrections at all at our disposal. On the other hand, we have
indirect but strong evidence that, in fact, the emission of multiple soft gluons plays a
significant role in building up the event structure, e.g. at LEP, and this sets a limit to
the applicability of matrix elements. Since the phase space available for gluon emission
increases with the available energy, the matrix-element approach becomes less relevant
for the full structure of events at higher energies. However, the perturbative expansion
is better behaved at higher energy scales, owing to the running of as. As a consequence,
inclusive measurements, e.g. of the rate of well-separated jets, should yield more reliable
results at high energies.

The second possible approach is the parton-shower one. Here an arbitrary number of
branchings of one parton into two (or more) may be combined, to yield a description of
multijet events, with no explicit upper limit on the number of partons involved. This is
possible since the full matrix-element expressions are not used, but only approximations
derived by simplifying the kinematics, and the interference and helicity structure. Parton
showers are therefore expected to give a good description of the substructure of jets, but in
principle the shower approach has limited predictive power for the rate of well-separated
jets (i.e. the 2/3/4/5-jet composition). In practice, shower programs may be matched to
first-order matrix elements to describe the hard-gluon emission region reasonably well, in
particular for the eTe™ annihilation process. Nevertheless, the shower description is not
optimal for absolute ag determinations.

Thus the two approaches are complementary in many respects, and both have found
use. However, because of its simplicity and flexibility, the parton-shower option is gener-
ally the first choice, while the matrix elements one is mainly used for a4 determinations,
angular distribution of jets, triple-gluon vertex studies, and other specialized studies. Ob-
viously, the ultimate goal would be to have an approach where the best aspects of the
two worlds are harmoniously married. This is currently a topic of quite some study.

2.2.1 Matrix elements

Matrix elements are especially made use of in the older JETSET-originated implementation
of the process eTe™ — v*/Z° — qq.

For initial-state QED radiation, a first order (un-exponentiated) description has been
adopted. This means that events are subdivided into two classes, those where a photon
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is radiated above some minimum energy, and those without such a photon. In the latter
class, the soft and virtual corrections have been lumped together to give a total event rate
that is correct up to one loop. This approach worked fine at PETRA/PEP energies, but
does not do so well for the Z° line shape, i.e. in regions where the cross section is rapidly
varying and high precision is strived for.

For final-state QCD radiation, several options are available. The default is the parton-
shower one (see below), but the matrix-elements options are also frequently used. In the
definition of 3- or 4-jet events, a cut is introduced whereby it is required that any two
partons have an invariant mass bigger than some fraction of the c.m. energy. 3-jet events
which do not fulfil this requirement are lumped with the 2-jet ones. The first-order matrix-
element option, which only contains 3- and 2-jet events therefore involves no ambiguities.
In second order, where also 4-jets have to be considered, a main issue is what to do with
4-jet events that fail the cuts. Depending on the choice of recombination scheme, whereby
the two nearby partons are joined into one, different 3-jet events are produced. Therefore
the second-order differential 3-jet rate has been the subject of some controversy, and the
program actually contains two different implementations.

By contrast, the normal PYTHIA event generation machinery does not contain any full
higher-order matrix elements, with loop contributions included. There are several cases
where higher-order matrix elements are included at the Born level. Consider the case of
resonance production at a hadron collider, e.g. of a W, which is contained in the lowest-
order process qq@ — W. In an inclusive description, additional jets recoiling against the W
may be generated by parton showers. PYTHIA also contains the two first-order processes
qg — Wq and q@ — Wg. The cross sections for these processes are divergent when the
p1 — 0. In this region a correct treatment would therefore have to take into account loop
corrections, which are not available in PYTHIA.

Even without having these accessible, we know approximately what the outcome
should be. The virtual corrections have to cancel the p; — 0 singularities of the real
emission. The total cross section of W production therefore receives finite O(ay) cor-
rections to the lowest-order answer. These corrections can often be neglected to first
approximation, except when high precision is required. As for the shape of the W p,
spectrum, the large cross section for low-p; emission has to be interpreted as allowing
more than one emission to take place. A resummation procedure is therefore necessary
to have matrix element make sense at small p,. The outcome is a cross section below the
naive one, with a finite behaviour in the p; — 0 limit.

Depending on the physics application, one could then use PYTHIA in one of two
ways. In an inclusive description, which is dominated by the region of reasonably small
p.1, the preferred option is lowest-order matrix elements combined with parton showers,
which actually is one way of achieving the required resummation. For W production as
background to some other process, say, only the large-p, tail might be of interest. Then
the shower approach may be inefficient, since only few events will end up in the interesting
region, while the matrix-element alternative allows reasonable cuts to be inserted from
the beginning of the generation procedure. (One would probably still want to add showers
to describe additional softer radiation, at the cost of some smearing of the original cuts.)
Furthermore, and not less importantly, the matrix elements should give a more precise
prediction of the high-p, event rate than the approximate shower procedure.

In the particular case considered here, that of W production, and a few similar pro-
cesses, actually the shower has been improved by a matching to first-order matrix ele-
ments, thus giving a decent description over the whole p; range. This does not provide
the first-order corrections to the total W production rate, however, nor the possibility to
select only a high-p, tail of events.
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2.2.2 Parton showers

The separation of radiation into initial- and final-state showers is arbitrary, but very
convenient. There are also situations where it is appropriate: for instance, the process
efe” — Z° — qq only contains final-state QCD radiation (QED radiation, however, is
possible both in the initial and final state), while qq — Z° — eTe™ only contains initial-
state QCD one. Similarly, the distinction of emission as coming either from the q or from
the q is arbitrary. In general, the assignment of radiation to a given mother parton is a
good approximation for an emission close to the direction of motion of that parton, but
not for the wide-angle emission in between two jets, where interference terms are expected
to be important.

In both initial- and final-state showers, the structure is given in terms of branchings
a — be, specifically e — ey, ¢ — qg, ¢ — q7, g — gg, and g — qq. (Further branchings,
like v — eTe™ and v — qq, could also have been added, but have not yet been of interest.)
Each of these processes is characterized by a splitting kernel P, ;.(z). The branching rate
is proportional to the integral [ P, .;.(z)dz. The z value picked for a branching describes
the energy sharing, with daughter b taking a fraction z and daughter ¢ the remaining 1 —z
of the mother energy. Once formed, the daughters b and ¢ may in turn branch, and so on.

Each parton is characterized by some virtuality scale Q?, which gives an approximate
sense of time ordering to the cascade. In the initial-state shower, Q? values are gradually
increasing as the hard scattering is approached, while Q2 is decreasing in the final-state
showers. Shower evolution is cut off at some lower scale (), typically around 1 GeV for
QCD branchings. From above, a maximum scale Q). is introduced, where the showers
are matched to the hard interaction itself. The relation between )., and the kinematics
of the hard scattering is uncertain, and the choice made can strongly affect the amount
of well-separated jets.

Despite a number of common traits, the initial- and final-state radiation machineries
are in fact quite different, and are described separately below.

Final-state showers are time-like, i.e. partons have m? = E* — p? > 0. The evolution
variable Q% of the cascade is therefore in PYTHIA associated with the m? of the branching
parton, but this choice is not unique. Starting from Q2 , an original parton is evolved
downwards in % until a branching occurs. The selected Q? value defines the mass of the
branching parton, and the z of the splitting kernel the parton energy division between
its daughters. These daughters may now, in turn, evolve downwards, in this case with
maximum virtuality already defined by kinematics, and so on down to the Q)¢ cut-off.

In QCD showers, corrections to the leading-log picture, so-called coherence effects,
lead to an ordering of subsequent emissions in terms of decreasing angles. This does
not follow automatically from the mass-ordering constraint, but is implemented as an
additional requirement on allowed emissions. Photon emission is not affected by angular
ordering. It is also possible to obtain non-trivial correlations between azimuthal angles in
the various branchings, some of which are implemented as options. Finally, the theoretical
analysis strongly suggests the scale choice ax = ag(p?) = as(2(1 — 2)m?), and this is the
default in the program.

The final-state radiation machinery is normally applied in the c.m. frame of the hard
scattering or a decaying resonance. The total energy and momentum of that subsystem is
preserved, as is the direction of the outgoing partons (in their common rest frame), where
applicable.

In contrast to final-state showers, initial-state ones are space-like. This means that,
in the sequence of branchings a — bc that lead up from the shower initiator to the hard
interaction, particles a and b have m? = E? — p? < 0. The ‘side branch’ particle ¢, which
does not participate in the hard scattering, may be on the mass shell, or have a time-like
virtuality. In the latter case a time-like shower will evolve off it, rather like the final-state
radiation described above. To first approximation, the evolution of the space-like main
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branch is characterized by the evolution variable Q? = —m?, which is required to be
strictly increasing along the shower, i.e. Q7 > Q2. Corrections to this picture have been
calculated, but are basically absent in PYTHIA.

Initial-state radiation is handled within the backwards evolution scheme. In this ap-
proach, the choice of the hard scattering is based on the use of evolved parton distributions,
which means that the inclusive effects of initial-state radiation are already included. What
remains is therefore to construct the exclusive showers. This is done starting from the
two incoming partons at the hard interaction, tracing the showers ‘backwards in time’,
back to the two shower initiators. In other words, given a parton b, one tries to find the
parton a that branched into b. The evolution in the Monte Carlo is therefore in terms
of a sequence of decreasing space-like virtualities Q? and increasing momentum fractions
2. Branchings on the two sides are interleaved in a common sequence of decreasing Q?
values.

In the above formalism, there is no real distinction between gluon and photon emission.
Some of the details actually do differ, as will be explained in the full description.

The initial- and final-state radiation shifts around the kinematics of the original hard
interaction. In Deeply Inelastic Scattering, this means that the z and Q? values that can
be derived from the momentum of the scattered lepton do not automatically agree with
the values originally picked. In high-p, processes, it means that one no longer has two
jets with opposite and compensating p, , but more complicated topologies. Effects of any
original kinematics selection cuts are therefore smeared out, an unfortunate side-effect of
the parton-shower approach.

2.3 Beam Remnants and Multiple Interactions

In a hadron—hadron collision, the initial-state radiation algorithm reconstructs one shower
initiator in each beam. This initiator only takes some fraction of the total beam energy,
leaving behind a beam remnant which takes the rest. For a proton beam, a u quark ini-
tiator would leave behind a ud diquark beam remnant, with an antitriplet colour charge.
The remnant is therefore colour-connected to the hard interaction, and forms part of
the same fragmenting system. It is further customary to assign a primordial transverse
momentum to the shower initiator, to take into account the motion of quarks inside the
original hadron, at least as required by the uncertainty principle by the proton size, prob-
ably augmented by unresolved (i.e. not simulated) soft shower activity. This primordial
k. is selected according to some suitable distribution, and the recoil is assumed to be
taken up by the beam remnant.

Often the remnant is more complicated, e.g. a gluon initiator would leave behind a uud
proton remnant system in a colour octet state, which can conveniently be subdivided into
a colour triplet quark and a colour antitriplet diquark, each of which are colour-connected
to the hard interaction. The energy sharing between these two remnant objects, and their
relative transverse momentum, introduces additional degrees of freedom, which are not
understood from first principles.

Naively, one would expect an ep event to have only one beam remnant, and an ete™
event none. This is not always correct, e.g. a 7y — (q interaction in an ete™ event would
leave behind the et and e~ as beam remnants, and a qq — gg interaction in resolved
photoproduction in an e*e™ event would leave behind one e* and one q or @ in each
remnant. Corresponding complications occur for photoproduction in ep events.

There is another source of beam remnants. If parton distributions are used to resolve
an electron inside an electron, some of the original energy is not used in the hard in-
teraction, but is rather associated with initial-state photon radiation. The initial-state
shower is in principle intended to trace this evolution and reconstruct the original elec-
tron before any radiation at all took place. However, because of cut-off procedures, some
small amount may be left unaccounted for. Alternatively, you may have chosen to switch

16



off initial-state radiation altogether, but still preserved the resolved electron parton dis-
tributions. In either case the remaining energy is given to a single photon of vanishing
transverse momentum, which is then considered in the same spirit as ‘true’ beam rem-
nants.

So far we have assumed that each event only contains one hard interaction, i.e. that
each incoming particle has only one parton which takes part in hard processes, and that all
other constituents sail through unaffected. This is appropriate in eTe™ or ep events, but
not necessarily so in hadron—hadron collisions. Here each of the beam particles contains
a multitude of partons, and so the probability for several interactions in one and the
same event need not be negligible. In principle these additional interactions could arise
because one single parton from one beam scatters against several different partons from
the other beam, or because several partons from each beam take place in separate 2 — 2
scatterings. Both are expected, but combinatorics should favour the latter, which is the
mechanism considered in PYTHIA.

The dominant 2 — 2 QCD cross sections are divergent for p; — 0, and drop rapidly
for larger p,. Probably the lowest-order perturbative cross sections will be regularized
at small p; by colour coherence effects: an exchanged gluon of small p, has a large
transverse wave function and can therefore not resolve the individual colour charges of
the two incoming hadrons; it will only couple to an average colour charge that vanishes
in the limit p; — 0. In the program, some effective p i, scale is therefore introduced,
below which the perturbative cross section is either assumed completely vanishing or at
least strongly damped. Phenomenologically, p | ,in comes out to be a number of the order
of 1.5-2.0 GeV, with some energy dependence.

In a typical ‘minimum-bias’ event one therefore expects to find one or a few scatterings
at scales around or a bit above p, ., while a high-p; event also may have additional
scatterings at the p i, scale. The probability to have several high-p, scatterings in the
same event is small, since the cross section drops so rapidly with p, .

The understanding of multiple interaction is still very primitive. PYTHIA therefore
contains several different options, with a fairly advanced one as default. The options
differ e.g. on the issue of the ‘pedestal’ effect: is there an increased probability or not for
additional interactions in an event which is known to contain a hard scattering, compared
with one that contains no hard interactions? Other differences concern the level of detail
in the generation of scatterings after the first one, and the model that describes how the
scatterings are intercorrelated in colour space.

2.4 Hadronization

QCD perturbation theory, formulated in terms of quarks and gluons, is valid at short
distances. At long distances, QCD becomes strongly interacting and perturbation theory
breaks down. In this confinement regime, the coloured partons are transformed into
colourless hadrons, a process called either hadronization or fragmentation. In this paper
we reserve the former term for the combination of fragmentation and the subsequent decay
of unstable particles.

The fragmentation process has yet to be understood from first principles, starting from
the QCD Lagrangian. This has left the way clear for the development of a number of
different phenomenological models. Three main schools are usually distinguished, string
fragmentation (SF), independent fragmentation (IF) and cluster fragmentation (CF), but
many variants and hybrids exist. Being models, none of them can lay claims to being
‘correct’, although some may be better founded than others. The best that can be aimed
for is internal consistency, a good representation of existing data, and a predictive power
for properties not yet studied or results at higher energies.
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2.4.1 String Fragmentation

The original JETSET program is intimately connected with string fragmentation, in the
form of the time-honoured ‘Lund model’. This is the default for all PYTHIA applications,
but independent fragmentation options also exist, for applications where one wishes to
study the importance of string effects.

All current models are of a probabilistic and iterative nature. This means that the
fragmentation process as a whole is described in terms of one or a few simple underlying
branchings, of the type jet — hadron 4+ remainder-jet, string — hadron 4 remainder-
string, and so on. At each branching, probabilistic rules are given for the production of
new flavours, and for the sharing of energy and momentum between the products.

To understand fragmentation models, it is useful to start with the simplest possible
system, a colour-singlet qq 2-jet event, as produced in e"e™ annihilation. Here lattice
QCD studies lend support to a linear confinement picture (in the absence of dynamical
quarks), i.e. the energy stored in the colour dipole field between a charge and an anticharge
increases linearly with the separation between the charges, if the short-distance Coulomb
term is neglected. This is quite different from the behaviour in QED, and is related to
the presence of a triple-gluon vertex in QCD. The details are not yet well understood,
however.

The assumption of linear confinement provides the starting point for the string model.
As the q and @ partons move apart from their common production vertex, the physical
picture is that of a colour flux tube (or maybe a colour vortex line) being stretched between
the q and the . The transverse dimensions of the tube are of typical hadronic sizes,
roughly 1 fm. If the tube is assumed to be uniform along its length, this automatically
leads to a confinement picture with a linearly rising potential. In order to obtain a Lorentz
covariant and causal description of the energy flow due to this linear confinement, the most
straightforward way is to use the dynamics of the massless relativistic string with no
transverse degrees of freedom. The mathematical, one-dimensional string can be thought
of as parameterizing the position of the axis of a cylindrically symmetric flux tube. From
hadron spectroscopy, the string constant, i.e. the amount of energy per unit length, is
deduced to be k &~ 1 GeV/fm. The expression ‘massless’ relativistic string is somewhat
of a misnomer: k effectively corresponds to a ‘mass density’ along the string.

Let us now turn to the fragmentation process. As the q and @ move apart, the potential
energy stored in the string increases, and the string may break by the production of a
new ¢'q pair, so that the system splits into two colour-singlet systems qq’ and ¢'q. If the
invariant mass of either of these string pieces is large enough, further breaks may occur.
In the Lund string model, the string break-up process is assumed to proceed until only
on-mass-shell hadrons remain, each hadron corresponding to a small piece of string with
a quark in one end and an antiquark in the other.

In order to generate the quark—antiquark pairs q'q’ which lead to string break-ups, the
Lund model invokes the idea of quantum mechanical tunnelling. This leads to a flavour-
independent Gaussian spectrum for the p, of ¢'q pairs. Since the string is assumed to
have no transverse excitations, this p, is locally compensated between the quark and the
antiquark of the pair. The total p, of a hadron is made up out of the p, contributions
from the quark and antiquark that together form the hadron. Some contribution of very
soft perturbative gluon emission may also effectively be included in this description.

The tunnelling picture also implies a suppression of heavy-quark production, u:d :s:
c~1:1:0.3:107. Charm and heavier quarks hence are not expected to be produced
in the soft fragmentation, but only in perturbative parton-shower branchings g — qq.

When the quark and antiquark from two adjacent string breaks are combined to form
a meson, it is necessary to invoke an algorithm to choose between the different allowed
possibilities, notably between pseudoscalar and vector mesons. Here the string model
is not particularly predictive. Qualitatively one expects a 1 : 3 ratio, from counting
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the number of spin states, multiplied by some wave-function normalization factor, which
should disfavour heavier states.

A tunnelling mechanism can also be used to explain the production of baryons. This
is still a poorly understood area. In the simplest possible approach, a diquark in a
colour antitriplet state is just treated like an ordinary antiquark, such that a string can
break either by quark—antiquark or antidiquark—diquark pair production. A more complex
scenario is the ‘popcorn’ one, where diquarks as such do not exist, but rather quark—
antiquark pairs are produced one after the other. This latter picture gives a less strong
correlation in flavour and momentum space between the baryon and the antibaryon of a
pair.

In general, the different string breaks are causally disconnected. This means that it is
possible to describe the breaks in any convenient order, e.g. from the quark end inwards.
One therefore is led to write down an iterative scheme for the fragmentation, as follows.
Assume an initial quark q moving out along the +z axis, with the antiquark going out
in the opposite direction. By the production of a q;q; pair, a meson with flavour content
qq, is produced, leaving behind an unpaired quark q;. A second pair G, may now be
produced, to give a new meson with flavours q;q,, etc. At each step the produced hadron
takes some fraction of the available energy and momentum. This process may be iterated
until all energy is used up, with some modifications close to the @ end of the string in
order to make total energy and momentum come out right.

The choice of starting the fragmentation from the quark end is arbitrary, however.
A fragmentation process described in terms of starting at the q end of the system and
fragmenting towards the ¢ end should be equivalent. This ‘left—right’ symmetry constrains
the allowed shape of the fragmentation function f(z), where z is the fraction of the
remaining light-cone momentum F + p, (4 for the q jet, — for the @ one) taken by
each new particle. The resulting ‘Lund symmetric fragmentation function’ has two free
parameters, which are determined from data.

If several partons are moving apart from a common origin, the details of the string
drawing become more complicated. For a qqg event, a string is stretched from the q
end via the g to the @ end, i.e. the gluon is a kink on the string, carrying energy and
momentum. As a consequence, the gluon has two string pieces attached, and the ratio of
gluon to quark string force is 2, a number which can be compared with the ratio of colour
charge Casimir operators, No/Cr = 2/(1 — 1/NZ) = 9/4. In this, as in other respects,
the string model can be viewed as a variant of QCD where the number of colours Ng
is not 3 but infinite. Note that the factor 2 above does not depend on the kinematical
configuration: a smaller opening angle between two partons corresponds to a smaller
string length drawn out per unit time, but also to an increased transverse velocity of the
string piece, which gives an exactly compensating boost factor in the energy density per
unit string length.

The qqg string will fragment along its length. To first approximation this means
that there is one fragmenting string piece between q and g and a second one between g
and @. One hadron is straddling both string pieces, i.e. sitting around the gluon corner.
The rest of the particles are produced as in two simple qq strings, but strings boosted
with respect to the overall c.m. frame. When considered in detail, the string motion
and fragmentation is more complicated, with the appearance of additional string regions
during the time evolution of the system. These corrections are especially important for
soft and collinear gluons, since they provide a smooth transition between events where
such radiation took place and events where it did not. Therefore the string fragmentation
scheme is ‘infrared safe’ with respect to soft or collinear gluon emission.

For events that involve many partons, there may be several possible topologies for
their ordering along the string. An example would be a qqg;gs (the gluon indices are here
used to label two different gluon-momentum vectors), where the string can connect the
partons in either of the sequences q —g; —gs —q and q — gs — g1 —q. The matrix elements
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that are calculable in perturbation theory contain interference terms between these two
possibilities, which means that the colour flow is not always well-defined. Fortunately, the
interference terms are down in magnitude by a factor 1/N2, where N¢ = 3 is the number
of colours, so approximate recipes can be found. In the leading log shower description,
on the other hand, the rules for the colour flow are well-defined.

A final comment: in the argumentation for the importance of colour flows there is
a tacit assumption that soft-gluon exchanges between partons will not normally mess
up the original colour assignment. Colour rearrangement models provide toy scenarios
wherein deviations from this rule could be studied. Of particular interest has been the
process ete” — WTW~™ — q1q,q3q,, where the original singlets q;q, and q3q, could
be rearranged to q;q, and qsq,. So far, there are no experimental evidence for dramatic
effects of this kind, but the more realistic models predict effects sufficiently small that these
have not been ruled out. Another example of nontrivial effects is that of Bose-Einstein
correlations between identical final-state particles, which reflect the true quantum nature
of the hadronization process.

2.4.2 Decays

A large fraction of the particles produced by fragmentation are unstable and subsequently
decay into the observable stable (or almost stable) ones. It is therefore important to in-
clude all particles with their proper mass distributions and decay properties. Although
involving little deep physics, this is less trivial than it may sound: while a lot of ex-
perimental information is available, there is also very much that is missing. For charm
mesons, it is necessary to put together measured exclusive branching ratios with some
inclusive multiplicity distributions to obtain a consistent and reasonably complete set of
decay channels, a rather delicate task. For bottom even less is known, and for some B
baryons only a rather simple phase-space type of generator has been used for hadronic
decays.

Normally it is assumed that decay products are distributed according to phase space,
i.e. that there is no dynamics involved in their relative distribution. However, in many
cases additional assumptions are necessary, e.g. for semileptonic decays of charm and
bottom hadrons one needs to include the proper weak matrix elements. Particles may
also be produced polarized and impart a non-isotropic distribution to their decay products.
Many of these effects are not at all treated in the program. In fact, spin information is
not at all carried along, but has to be reconstructed explicitly when needed.

This normal decay treatment makes use of a set of tables where branching ratios
and decay modes are stored. It encompasses all hadrons made out of d, u, s, ¢ and b
quarks, and also the leptons. The decay products are hadrons, leptons and photons.
Some bb states are sufficiently heavy that they are allowed to decay to partonic states,
like T — ggg, which subsequently fragment, but these are exceptions.

You may at will change the particle properties, decay channels or branching ratios of
the above particles. There is no censorship what is allowed or not allowed, beyond energy—
momentum and (electrical and colour) charge conservation. There is also no impact e.g. on
the cross section of processes, since there is no way of knowing e.g. if the restriction to one
specific decay of a particle is because that decay is of particular interest to us, or because
recent measurement have shown that this indeed is the only channel. Furthermore, the
number of particles produced of each species in the hadronization process is not known
beforehand, and so cannot be used to correctly bias the preceding steps of the generation
chain. All of this contrasts with the class of ‘resonances’ described above, in section 2.1.2.
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3 Program Overview

This section contains a diverse collection of information. The first part is an overview of
previous JETSET and PYTHIA versions. The second gives instructions for installation of
the program and describes its philosophy: how it is constructed and how it is supposed
to be used. It also contains some information on how to read this manual. The third and
final part contains several examples of pieces of code or short programs, to illustrate the
general style of program usage. This last part is mainly intended as an introduction for
completely new users, and can be skipped by more experienced ones.

The combined PYTHIA package is completely self-contained. Interfaces to externally
defined subprocesses, parton-distribution function libraries, 7 decay libraries, and a time
routine are provided, however, plus a few other optional interfaces.

Many programs written by other persons make use of PYTHIA, especially the string
fragmentation machinery. It is not the intention to give a complete list here. A majority of
these programs are specific to given collaborations, and therefore not publicly distributed.
Below we give a list of a few public programs from the ‘Lund group’, which may have a
somewhat wider application. None of them are supported by the PYTHIA author team,
so any requests should be directed to the persons mentioned.

e ARIADNE is a generator for dipole emission, written mainly by L. Lonnblad [Pet88].

e AROMA is a generator for heavy-flavour processes in leptoproduction, written by

G. Ingelman, J. Rathsman and G. Schuler [Ing88].

e FRITIOF is a generator for hadron-hadron, hadron-—nucleus and nucleus—nucleus

collisions [Nil87].

e LEPTO is a leptoproduction event generator, written mainly by G. Ingelman [Ing80].

It can generate parton configurations in Deeply Inelastic Scattering according to a
number of possibilities.

e POMPYT is a generator for pomeron interactions written by G. Ingelman and col-

laborators [Bru96].
One should also note that a version of PYTHIA has been modified to include the effects
of longitudinally polarized incoming protons. This is the work of St. Giillenstern et al.

(Giil93)].

3.1 Update History

For the record, in Tables 1 and 2 we list the official main versions of JETSET and PYTHIA,
respectively, with some brief comments.

All versions preceding PYTHIA 6.1 should now be considered obsolete, and are no
longer maintained. For stable applications, the earlier combination JETSET 7.4 and
PyTHIA 5.7 could still be used, however. (A note on backwards compatibility: persons
who have code that relies on the old LUJETS single precision common block could easily
write a translation routine to copy the PYJETS double precision information to LUJETS.
In fact, among the old JETSET 7 routines, only LUGIVE and LULOGO routines have access
to some PYTHIA common blocks, and therefore these are the only ones that need to be
modified if one, for some reason, would like to combine PYTHIA 6 with the old JETSET 7
routines.)

The move from JETSET 7.4 and PYTHIA 5.7 to PYTHIA 6.1 was a major one. For
reasons of space, individual points are therefore not listed separately below, but only the
main ones. The PYTHIA web page contains complete update notes, where all changes are
documented by topic and subversion.

The main new features of PYTHIA 6.1, either present from the beginning or added
later on, include:

e PYTHIA and JETSET have been merged.
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Table 1: The main versions of JETSET, with their date of appearance, published
manuals, and main changes from previous versions.

No. | Date Publ. | Main new or improved features

1 | Nov 78 | [Sjo78] | single-quark jets

May 79 | [Sj679] | heavy-flavour jets

3.1 | Aug 79 — 2-jets in eTe™, preliminary 3-jets

3.2 | Apr 80 | [Sjo80] | 3-jets in ete™ with full matrix elements,
toponium — ggg decays

3.3 | Aug 80 — softer fragmentation spectrum

4.1 | Apr 81 — baryon production and diquark fragmentation,
fourth-generation quarks, larger jet systems
4.2 | Nov 81 — low-p, physics

4.3 | Mar 82 | [Sjo82] | 4-jets and QFD structure in ete™,

Jul 82 | [Sj683] | event-analysis routines

5.1 | Apr 83 — improved string fragmentation scheme, symmetric
fragmentation, full 2°¢ order QCD for ete~

5.2 | Nov 83 — momentum-conservation schemes for IF,
initial-state photon radiation in ete™

5.3 | May 84 — ‘popcorn’ model for baryon production

6.1 | Jan 85 — common blocks restructured, parton showers

6.2 | Oct 85 | [Sjo86] | error detection

6.3 | Oct 86 | [Sjo87] | new parton-shower scheme

7.1 | Feb 89 — new particle codes and common block structure,
more mesons, improved decays, vertex information,
Abelian gluon model, Bose—Einstein effects

7.2 | Nov 89 — interface to new standard common block,

photon emission in showers

7.3 | May 90 | [Sjo92d] | expanded support for non-standard particles

7.4 | Dec 93 | [Sj694] | updated particle data and defaults

e All real variables are declared in double precision.
e The internal mapping of particle codes has changed.

e The supersymmetric process machinery of SPYTHIA has been included and further

improved, with several new processes.

e Many new processes of beyond-the-standard-model physics, in areas such as techni-

color and doubly-charged Higgs bosons.

e An expanded description of QCD processes in virtual-photon interactions, combined

with a new machinery for the flux of virtual photons from leptons.

e Initial-state parton showers are matched to the next-to-leading order matrix ele-

ments for gauge boson production.

e Final-state parton showers are matched to a number of different first-order matrix

elements for gluon emission, including full mass dependence.

e The hadronization description of low-mass strings has been improved, with conse-

quences especially for heavy-flavour production.
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Table 2: The main versions of PYTHIA, with their date of appearance, published
manuals, and main changes from previous versions.

No. | Date Publ. Main new or improved features
1 | Dec 82 | [Ben84] | synthesis of predecessors COMPTON, HIGHPT and
KASSANDRA
2 —

3.1 —

3.2 —

3.3 | Feb 84 | [Ben84a] | scale-breaking parton distributions

3.4 | Sep 84 | [Ben85] | more efficient kinematics selection

4.1 | Dec 84 initial- and final-state parton showers, W and Z

4.2 | Jun 85 multiple interactions

4.3 | Aug 85 WW, WZ, ZZ and R processes

4.4 | Nov 85 YW, ~Z, v processes

4.5 | Jan 86 H° production, diffractive and elastic events

4.6 | May 86 angular correlation in resonance pair decays

4.7 | May 86 7% and HT processes

4.8 | Jan 87 | [Ben87] | variable impact parameter in multiple interactions

4.9 | May 87 gH™ process

5.1 | May 87 massive matrix elements for heavy quarks

5.2 | Jun 87 intermediate boson scattering

5.3 | Oct 89 new particle and subprocess codes, new common block
structure, new kinematics selection, some
lepton—lepton and lepton—hadron interactions,
new subprocesses

5.4 | Jun 90 s-dependent widths, resonances not on the mass shell,
new processes, new parton distributions

5.5 | Jan 91 improved ete™ and ep, several new processes

5.6 | Sep 91 | [Sj692d] | reorganized parton distributions, new processes,
user-defined external processes

5.7 | Dec 93 | [Sj694] | new total cross sections, photoproduction, top decay

6.1 | Mar 97 | [Sjo01] | merger with JETSET, double precision, supersymmetry,
technicolor, extra dimensions, etc. new processes,
improved initial- and final-state showers,
baryon production, virtual photon processes

6.2 | Aug 01 | [Sjo0la] | user processes, R-parity violation

6.3 | Aug 03 this improved multiple interactions
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An alternative baryon production model has been introduced.
Colour rearrangement is included as a new option, and several alternative Bose-
Einstein descriptions are added.

By comparison, the move from PYTHIA 6.1 to PYTHIA 6.2 was rather less dramatic.
Again update notes tell the full story. Some of the main new features, present from the
beginning or added later on, which may affect backwards compatibility, are:

A new machinery to handle user-defined external processes, according to the stan-
dard in [Boo01]. The old machinery is no longer available. Some of the alternatives
for the FRAME argument in the PYINIT call have also been renamed to make way for
a new ’USER’ option.

The maximum size of the decay channel table has been increased from 4000 to 8000,
affecting the MDME, BRAT and KFDP arrays in the PYDAT3 common block.

A number of internally used and passed arrays, such as WDTP, WDTE, WDTPP, WDTEP,
WDTPM, WDTEM, XLAM and IDLAM, have been expanded from dimension 300 to 400.
Lepton- and baryon-number-violating decay channels have been included for super-
symmetric particles [Ska01, Sj603]. Thus the decay tables have grown considerably
longer.

The string hadronization scheme has been improved and expanded better to handle
junction topologies, where three strings meet. This is relevant for baryon-number-
violating processes, and also for the handling of baryon beam remnants. Thus new
routines have been introduced, and also e.g. new K(I,1) status codes.

A runtime interface to ISASUSY has been added, for determining the SUSY mass
spectrum and mixing parameters more accurately than with the internal PyTHIA
routines.

The Technicolor scenario is updated and extended. A new common block, PYTCSM,
is introduced for the parameters and switches in Technicolor and related scenarios,
and variables are moved to it from a few other common blocks. New processes
381-388 are introduced for standard QCD 2 — 2 interactions with Technicolor (or
other compositeness) extensions, while the processes 11, 12, 13, 28, 53, 68, 81 and
82 now revert back to being pure QCD.

The PYSHOW timelike showering routine has been expanded to allow showering inside
systems consisting of up to seven particles, which can be made use of in some
resonance decays and in user-defined processes.

The PYSSPA spacelike showering routine has been expanded with a q — qy branch-
ing.

The PYSIGH routine has been split into several, in order to make it more manage-
able. (It had increased to a size of over 7000 lines, which gave some compilers
problems.) All the phase-space and parton-density generic weights remain, whereas
the process-specific matrix elements have been grouped into new routines PYSGQC,
PYSGHF, PYSGWZ, PYSGHG, PYSGSU, PYSGTC and PYSGEX.

Some exotic particles and QCD effective states have been moved from temporary
flavour codes to a PDG-consistent naming, and a few new codes have been intro-
duced.

The maximum number of documentation lines in the beginning of the event record
has been expanded from 50 to 100.

The default parton distribution set for the proton is now CTEQ 5L.

The default Standard Model Higgs mass has been changed to 115 GeV.

The move from PYTHIA 6.2 to PYTHIA 6.3 involves no common block changes or
different call sequences. That is, any program that ran with PyTHIA 6.2 also ought to
run with PYTHIA 6.3, without any change required. Some news should be noted, however.

There is a completely new scenario for multiple interactions as the new default
[Sj603a]. Thus the physics output is changed whenever multiple interactions are al-
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lowed, i.e. in hadron-hadron collisions (where a resolved photon counts as a hadron).

e A new p,-ordered final-state shower is introduced as a non-default option to the
existing mass-ordered one [Sj603b].

e The current interface to the ISASUSY evolution package is based on ISAJET version
7.67. The dimensions of the SSPAR, SUGMG and SUGPAS common blocks found in the
PYSUGI routine could have to be modified if another ISAJET version is linked. The
latest change occured in PYTHIA 6.217, so there is a difference if you upgrade from
a version prior to that.

e The new routine PYLHA3 introduces a generic interface to SUSY spectrum and decay
calculators in agreement with the SUSY Les Houches Accord [Ska03], and thus offers
a long-term solution to the incompatibility problems noted above. Without SUSY
switched on, PYLHA3 can still be used stand-alone to read in LHA3 decay tables for
any particle, see section 14.4.

The update notes tell exactly with what version a new feature or a bug fix is introduced.

3.2 Program Installation

The PYTHIA ‘master copy’ is the one found on the web page

http://www.thep.lu.se/~torbjorn/Pythia.html

There you have, for several subversions xx:

pythia63xx.f the PYTHIA 6.3xx code,
pythia63xx.tex this PYTHIA manual, and
pythia63xx.update plain text update notes to the manual.

In addition to these, one may also find older versions of the program and manuals, sample
main programs and other pieces of related software, and other physics papers.

The program is written essentially entirely in standard Fortran 77, and should run on
any platform with such a compiler. To a first approximation, program compilation should
therefore be straightforward.

Unfortunately, experience with many different compilers has been uniform: the op-
tions available for obtaining optimized code may actually produce erroneous code (e.g.
operations inside DO loops are moved out before them, where some of the variables have
not yet been properly set). Therefore the general advice is to use a low optimization level.
Note that this is often not the default setting.

SAVE statements have been included in accordance with the Fortran standard.

All default settings and particle and process data are stored in BLOCK DATA PYDATA.
This subprogram must be linked for a proper functioning of the other routines. On some
platforms this is not done automatically but must be forced by you, e.g. by having a line

EXTERNAL PYDATA

at the beginning of your main program. This applies in particular if PYTHIA is main-
tained as a library from which routines are to be loaded only when they are needed. In
this connection we note that the library approach does not give any significant space
advantages over a loading of the packages as a whole, since a normal run will call on most
of the routines anyway, directly or indirectly.

With the move towards higher energies, e.g. for LHC applications, single-precision (32
bit) real arithmetic has become inappropriate. Therefore a declaration IMPLICIT DOUBLE
PRECISION(A-H,0-Z) at the beginning of each subprogram is inserted to ensure double-
precision (64 bit) real arithmetic. Remember that this also means that all calls to PyTHIA
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routines have to be done with real variables declared correspondingly in the user-written
calling program. An IMPLICIT INTEGER(I-N) is also included to avoid problems on some
compilers. Integer functions beginning with PY have to be declared explicitly. In total,
therefore all routines begin with

C...Double precision and integer declarations.
IMPLICIT DOUBLE PRECISION(A-H, 0-Z)
IMPLICIT INTEGER(I-N)

INTEGER PYK,PYCHGE,PYCOMP

and you are recommended to do the same in your main programs. Note that, in running
text and in description of common block default values, the more cumbersome double-
precision notation is not always made explicit, but code examples should be correct.

On a machine where DOUBLE PRECISION would give 128 bits, it may make sense to
use compiler options to revert to 64 bits, since the program is anyway not constructed to
make use of 128 bit precision.

Fortran 77 makes no provision for double-precision complex numbers. Therefore com-
plex numbers have been used only sparingly. However, some matrix element expressions,
mainly for supersymmetric and technicolor processes, simplify considerably when written
in terms of complex variables. In order to achieve a uniform precision, such variables
have been declared COMPLEX*16, and are manipulated with functions such as DCMPLX
and DCONJG. Affected are PYSIGH, PYWIDT and several of the supersymmetry routines.
Should the compiler not accept this deviation from the standard, or some simple equiv-
alent thereof (like DOUBLE COMPLEX instead of COMPLEX*16) these code pieces could be
rewritten to ordinary COMPLEX, also converting the real numbers involved to and from
single precision, with some drop in accuracy for the affected processes. PYRESD already
contains some ordinary COMPLEX variables, and should not cause any problems.

Several compilers report problems when an odd number of integers precede a double-
precision variable in a common block. Therefore an extra integer has been introduced as
padding in a few instances, e.g. NPAD, MSELPD and NGENPD.

Since Fortran 77 provides no date-and-time routine, PYTIME allows a system-specific
routine to be interfaced, with some commented-out examples given in the code. This
routine is only used for cosmetic improvements of the output, however, so can be left at
the default with time 0 given.

A test program, PYTEST, is included in the PYTHIA package. It is disguised as a
subroutine, so you have to run a main program

CALL PYTEST(1)
END

This program will generate over a thousand events of different types, under a variety of
conditions. If PYTHIA has not been properly installed, this program is likely to crash, or
at least generate a number of erroneous events. This will then clearly be marked in the
output, which otherwise will just contain a few sample event listings and a table of the
number of different particles produced. To switch off the output of normal events and
final table, use PYTEST(0) instead of PYTEST(1). The final tally of errors detected should
read 0.

For a program written to run PYTHIA 5 and JETSET 7, most of the conversion required
for PyTHIA 6 is fairly straightforward, and can be automatized. Both a simple Fortran
routine and a more sophisticated Perl [Gar98| script exist to this end, see the PYTHIA
web page. Some manual checks and interventions may still be required.

3.3 Program Philosophy

The Monte Carlo program is built as a slave system, i.e. you, the user, have to supply
the main program. From this the various subroutines are called on to execute specific
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tasks, after which control is returned to the main program. Some of these tasks may be
very trivial, whereas the ‘high-level’ routines by themselves may make a large number of
subroutine calls. Many routines are not intended to be called directly by you, but only
from higher-level routines such as PYEXEC, PYEEVT, PYINIT or PYEVNT.

Basically, this means that there are three ways by which you communicate with the
programs. First, by setting common block variables, you specify the details of how the
programs should perform specific tasks, e.g. which subprocesses should be generated,
which particle masses should be assumed, which coupling constants used, which fragmen-
tation scenarios, and so on with hundreds of options and parameters. Second, by calling
subroutines you tell the programs to generate events according to the rules established
above. Normally there are few subroutine arguments, and those are usually related to
details of the physical situation, such as what c.m. energy to assume for events. Third,
you can either look at the common block PYJETS to extract information on the generated
event, or you can call on various functions and subroutines to analyse the event further
for you.

It should be noted that, while the physics content is obviously at the centre of at-
tention, the PYTHIA package also contains a very extensive setup of auxiliary service
routines. The hope is that this will provide a comfortable working environment, where
not only events are generated, but where you also linger on to perform a lot of the subse-
quent studies. Of course, for detailed studies, it may be necessary to interface the output
directly to a detector simulation program.

The general rule is that all routines have names that are six characters long, beginning
with PY. There are three exceptions the length rules: PYK, PYP and PYR. The former two
functions are strongly coupled to the K and P matrices in the PYJETS common block, the
latter is very frequently used. Also common block names are six characters long and start
with PY. There are three integer functions, PYK,PYCHGE and PYCOMP. In all routines where
they are to be used, they have to be declared INTEGER.

On the issue of initialization, the routines of different origin and functionality behave
quite differently. Routines that are intended to be called from many different places, such
as showers, fragmentation and decays, require no specific initialization (except for the
one implied by the presence of BLOCK DATA PYDATA, see above), i.e. each event and each
task stands on its own. Current common block values are used to perform the tasks in
specific ways, and those rules can be changed from one event to the next (or even within
the generation of one and the same event) without any penalty. The random-number
generator is initialized at the first call, but usually this is transparent.

In the core process generation machinery (e.g. selection of the hard process kinematics),
on the other hand, a sizable amount of initialization is performed in the PYINIT call, and
thereafter the events generated by PYEVNT all obey the rules established at that point.
This improves the efficiency of the generation process, and also ties in with the Monte
Carlo integration of the process cross section over many events. Therefore common block
variables that specify methods and constraints to be used have to be set before the PYINIT
call and then not be changed afterwards, with few exceptions. Of course, it is possible
to perform several PYINIT calls in the same run, but there is a significant time overhead
involved, so this is not something one would do for each new event. The two older separate
process generation routines PYEEVT (and some of the routines called by it) and PYONIA
also contain some elements of initialization, where there are a few advantages if events are
generated in a coherent fashion. The cross section is not as complicated here, however, so
the penalty for reinitialization is small, and also does not require any special user calls.

Apart from writing a title page, giving a brief initialization information, printing error
messages if need be, and responding to explicit requests for listings, all tasks of the
program are performed ‘silently’. All output is directed to unit MSTU(11), by default 6,
and it is up to you to set this unit open for write. The only exceptions are PYRGET, PYRSET
and PYUPDA where, for obvious reasons, the input/output file number is specified at each
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call. Here you again have to see to it that proper read/write access is set.

The programs are extremely versatile, but the price to be paid for this is having a
large number of adjustable parameters and switches for alternative modes of operation.
No single user is ever likely to need more than a fraction of the available options. Since
all these parameters and switches are assigned sensible default values, there is no reason
to worry about them until the need arises.

Unless explicitly stated (or obvious from the context) all switches and parameters can
be changed independently of each other. One should note, however, that if only a few
switches/parameters are changed, this may result in an artificially bad agreement with
data. Many disagreements can often be cured by a subsequent retuning of some other
parameters of the model, in particular those that were once determined by a comparison
with data in the context of the default scenario. For example, for ete™ annihilation, such
a retuning could involve one QCD parameter (ag or A), the longitudinal fragmentation
function, and the average transverse momentum in fragmentation.

The program contains a number of checks that requested processes have been imple-
mented, that flavours specified for jet systems make sense, that the energy is sufficient to
allow hadronization, that the memory space in PYJETS is large enough, etc. If anything
goes wrong that the program can catch (obviously this may not always be possible), an
error message will be printed and the treatment of the corresponding event will be cut
short. In serious cases, the program will abort. As long as no error messages appear on
the output, it may not be worthwhile to look into the rules for error checking, but if but
one message appears, it should be enough cause for alarm to receive prompt attention.
Also warnings are sometimes printed. These are less serious, and the experienced user
might deliberately do operations which go against the rules, but still can be made to
make sense in their context. Only the first few warnings will be printed, thereafter the
program will be quiet. By default, the program is set to stop execution after ten errors,
after printing the last erroneous event.

It must be emphasized that not all errors will be caught. In particular, one tricky ques-
tion is what happens if an integer-valued common block switch or subroutine/function
argument is used with a value that is not defined. In some subroutine calls, a prompt
return will be expedited, but in most instances the subsequent action is entirely unpre-
dictable, and often completely haywire. The same goes for real-valued variables that are
assigned values outside the physically sensible range. One example will suffice here: if
PARJ(2) is defined as the s/u suppression factor, a value > 1 will not give more profuse
production of s than of u, but actually a spillover into ¢ production. Users, beware!

3.4 Manual Conventions

In the manual parts of this report, some conventions are used. All names of subprograms,
common blocks and variables are given in upper-case ‘typewriter’ style, e.g. MSTP(111)=0.
Also program examples are given in this style.

If a common block variable must have a value set at the beginning of execution, then
a default value is stored in the block data subprogram PYDATA. Such a default value is
usually indicated by a ‘(D=...)" immediately after the variable name, e.g.

MSTJ(1) : (D=1) choice of fragmentation scheme.

All variables in the fragmentation-related common blocks (with very few exceptions,
clearly marked) can be freely changed from one event to the next, or even within the
treatment of one single event; see discussion on initialization in the previous section. In
the process generation machinery common blocks the situation is more complicated. The
values of many switches and parameters are used already in the PYINIT call, and cannot
be changed after that. The problem is mentioned in the preamble to the afflicted common
blocks, which in particular means PYPARS and PYSUBS. For the variables which may still
be changed from one event to the next, a ‘(C)’ is added after the ‘(D=...)" statement.
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Normally, variables internal to the program are kept in separate common blocks and
arrays, but in a few cases such internal variables appear among arrays of switches and
parameters, mainly for historical reasons. These are denoted by ‘(R)’ for variables you
may want to read, because they contain potentially interesting information, and by ‘(I)’
for purely internal variables. In neither case may the variables be changed by you.

In the description of a switch, the alternatives that this switch may take are often
enumerated, e.g.

MSTJ(1) : (D=1) choice of fragmentation scheme.

=0 : no jet fragmentation at all.

=1 : string fragmentation according to the Lund model.

=2 : independent fragmentation, according to specification in MSTJ(2) and
MSTJ(3).

If you then use any value other than 0, 1 or 2, results are undefined. The action could
even be different in different parts of the program, depending on the order in which the
alternatives are identified.

It is also up to you to choose physically sensible values for parameters: there is no
check on the allowed ranges of variables. We gave an example of this at the end of the
preceding section.

Subroutines you are expected to use are enclosed in a box at the point where they are
defined:

CALL PYLIST(MLIST)

This is followed by a description of input or output parameters. The difference between
input and output is not explicitly marked, but should be obvious from the context. In
fact, the event-analysis routines of section 15.5 return values, while all the rest only have
input variables.

Routines that are only used internally are not boxed in. However, we use boxes for all
common blocks, so as to enhance the readability.

In running text, often specific switches and parameters will be mentioned, without a
reference to the place where they are described further. The Index at the very end of the
document allows you to find this place. Tables 3 and 4 gives a brief summary of almost
all common blocks and the variables stored there. Often names for switches begin with
MST and parameters with PAR. No common block variables begin with PY. There is thus
no possibility to confuse an array element with a function or subroutine call.

3.5 Getting Started with the Simple Routines

Normally PYTHIA is expected to take care of the full event generation process. At times,
however, one may want to access the more simple underlying routines, which allow a large
flexibility to ‘do it yourself’. We therefore start with a few cases of this kind, at the same
time introducing some of the more frequently used utility routines.

As a first example, assume that you want to study the production of uu 2-jet systems
at 20 GeV energy. To do this, write a main program

IMPLICIT DOUBLE PRECISION(A-H, 0-Z)
CALL PY2ENT(0,2,-2,20D0)

CALL PYLIST(1)

END

and run this program, linked together with PYTHIA. The routine PY2ENT is specifically
intended for storing two entries (partons or particles). The first argument (0) is a com-
mand to perform fragmentation and decay directly after the entries have been stored, the
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Table 3: An almost complete list of common blocks, with brief comments on their
main functions. The listing continues in Table 4.

...The event record.
COMMON/PYJETS/N,NPAD, K (4000,5) ,P(4000,5) ,V(4000,5)
. .Parameters.
COMMON/PYDAT1/MSTU(200) ,PARU(200) ,MSTJ(200) ,PARJ(200)
..Particle properties + some flavour parameters.
COMMON/PYDAT2KCHG (500,4) ,PMAS(500,4) ,PARF (2000) ,VCKM(4,4)
..Decay information.
COMMON/PYDAT3/MDCY (500, 3) ,MDME (8000,2) ,BRAT(8000) ,KFDP (8000, 5)
..Particle names
COMMON/PYDAT4/CHAF (500, 2)
CHARACTER CHAFx*16
. .Random number generator information.
COMMON/PYDATR/MRPY (6) ,RRPY (100)
..Selection of hard scattering subprocesses.
COMMON/PYSUBS/MSEL ,MSELPD,MSUB (500) ,KFIN(2,-40:40) ,CKIN(200)
. .Parameters.
COMMON/PYPARS/MSTP (200) ,PARP (200) ,MSTI (200) ,PARI (200)
..Internal variables.
COMMON/PYINT1/MINT (400) ,VINT (400)
..Process information.
COMMON/PYINT2/ISET(500) ,KFPR(500,2) ,COEF (500,20) ,ICOL(40,4,2)
..Parton distributions and cross sections.
COMMON/PYINT3/XSFX(2,-40:40) ,ISIG(1000,3) ,SIGH(1000)
. .Resonance width and secondary decay treatment.
COMMON/PYINT4/MWID(500) ,WIDS(500,5)
..Generation and cross section statistics.
COMMON/PYINT5/NGENPD,NGEN(0:500,3) ,XSEC(0:500,3)
. .Process names.
COMMON/PYINT6/PROC(0:500)
CHARACTER PROC*28
..Total cross sections.
COMMON/PYINT7/SIGT(0:6,0:6,0:5)
. .Photon parton distributions: total and valence only.
COMMON/PYINT8/XPVMD(-6:6) ,XPANL(-6:6) ,XPANH(-6:6) ,XPBEH(-6:6) ,
&XPDIR(-6:6)
COMMON/PYINT9/VXPVMD(-6:6) ,VXPANL(-6:6) ,VXPANH(-6:6) ,VXPDGM(-6:6)
. .Supersymmetry parameters.
COMMON/PYMSSM/IMSS(0:99) ,RMSS(0:99)
. .Supersymmetry mixing matrices.
COMMON/PYSSMT/ZMIX(4,4) ,UMIX(2,2),VMIX(2,2),SMZ(4),SMW(2),
&SFMIX(16,4) ,ZMIXI(4,4) ,UMIXI(2,2),VMIXI(2,2)
..R-parity-violating couplings in supersymmetry.
COMMON/PYMSRV/RVLAM(3,3,3), RVLAMP(3,3,3), RVLAMB(3,3,3)
..Internal parameters for R-parity-violating processes.
COMMON/PYRVNV/AB(2,16,2) ,RMS(0:3) ,RES(6,5) ,IDR,IDR2,DCMASS,KFR(3)
COMMON/PYRVPM/RM(0:3) ,A(2) ,B(2) ,RESM(2) ,RESW(2) ,MFLAG
LOGICAL MFLAG
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Table 4: Continuation of Table 3.

. .Parameters for Gauss integration of supersymmetric widths.

COMMON/PYINTS/XXM(20)
COMMON/PYG2DX /X1

..Histogram information.

COMMON/PYBINS/IHIST(4),INDX(1000),BIN(20000)

. .HEPEVT common block.

PARAMETER (NMXHEP=4000)
COMMON/HEPEVT/NEVHEP ,NHEP , ISTHEP (NMXHEP) , IDHEP (NMXHEP) ,
&JMOHEP (2, NMXHEP) , JDAHEP (2, NMXHEP) , PHEP (5, NMXHEP) , VHEP (4 , NMXHEP)
DOUBLE PRECISION PHEP,VHEP

..User process initialization common block.

INTEGER MAXPUP

PARAMETER (MAXPUP=100)

INTEGER IDBMUP,PDFGUP,PDFSUP, IDWTUP,NPRUP,LPRUP

DOUBLE PRECISION EBMUP,XSECUP,XERRUP,XMAXUP
COMMON/HEPRUP/IDBMUP (2) ,EBMUP(2) ,PDFGUP(2) ,PDFSUP(2),
&IDWTUP, NPRUP, XSECUP (MAXPUP) , XERRUP (MAXPUP) , XMAXUP (MAXPUP) ,
&LPRUP (MAXPUP)

..User process event common block.

INTEGER MAXNUP

PARAMETER (MAXNUP=500)

INTEGER NUP,IDPRUP,IDUP,ISTUP,MOTHUP,ICOLUP

DOUBLE PRECISION XWGTUP,SCALUP,AQEDUP,AQCDUP,PUP,VTIMUP,SPINUP

COMMON/HEPEUP/NUP, IDPRUP, XWGTUP, SCALUP , AQEDUP , AQCDUP, IDUP (MAXNUP) ,

&ISTUP (MAXNUP) ,MOTHUP (2,MAXNUP) , ICOLUP(2,MAXNUP) ,PUP(5,MAXNUP),
&VTIMUP (MAXNUP) ,SPINUP (MAXNUP)

second and third that the two entries are u (2) and @ (—2), and the last that the c.m.
energy of the pair is 20 GeV, in double precision. When this is run, the resulting event is
stored in the PYJETS common block. This information can then be read out by you. No
output is produced by PY2ENT itself, except for a title page which appears once for every
PYTHIA run.

Instead the second command, to PYLIST, provides a simple visible summary of the
information stored in PYJETS. The argument (1) indicates that the short version should
be used, which is suitable for viewing the listing directly on an 80-column terminal screen.
It might look as shown here.

H

O 0N O WN -

Event listing (summary)

particle/jet KS KF orig p_x P_y p_z E

() A 12 2 0 0.000 0.000 10.000 10.000 0
(ubar) vV 11 -2 0 0.000 0.000 -10.000 10.000 O
(string) 11 92 1 0.000 0.000 0.000 20.000 20
(rho+) 11 213 3 0.098 -0.154 2.710 2.856 O
(rho-) 11 -213 3 -0.227 0.145 6.538 6.590 O
pi+ 1 211 3 0.1256 -0.266 0.097 0.339 O
(Sigma0) 11 3212 3 -0.254 0.034 -1.397 1.855 1
(K*+) 11 323 3 -0.124 0.709 -2.753 2.968 0
pT- 1 -2212 3 0.395 -0.614 -3.806 3.988 O
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10 pi- 1 -211 3 -0.013 0.146 -1.389 1.403 0.140
11 pi+ 1 211 4 0.109 -0.456 2.164 2.218 0.140
12 (pi0) 11 111 4 -0.011 0.301 0.546 0.638 0.135
13 pi- 1 -211 5 0.089 0.343 2.089 2.124 0.140
14 (pi0) 11 111 5 -0.316 -0.197 4.449 4.467 0.135
15 (LambdaO) 11 3122 7 -0.208 0.014 -1.403 1.804 1.116
16 gamma 1 22 7 -0.046 0.020 0.006 0.050 0.000
17 K+ 1 321 8 -0.084 0.299 -2.139 2.217 0.494
18  (pi0) 11 111 8 -0.040 0.410 -0.614 0.751 0.135
19 gamma 1 22 12 0.059 0.146 0.224 0.274 0.000
20 gamma 1 22 12 -0.070 0.155 0.322 0.364 0.000
21 gamma 1 22 14 -0.322 -0.162 4.027 4.043 0.000
22 gamma 1 22 14 0.006 -0.035 0.422 0.423 0.000
23 pt 1 2212 15 -0.178 0.033 -1.343 1.649 0.938
24 pi- 1 -211 15 -0.030 -0.018 -0.059 0.156 0.140
25 gamma 1 22 18 -0.006 0.384 -0.585 0.699 0.000
26 gamma 1 22 18 -0.034 0.026 -0.029 0.052 0.000

sum: 0.00 0.000 0.000 0.000 20.000 20.000

(A few blanks have been removed between the columns to make it fit into the format
of this text.) Look in the particle/jet column and note that the first two lines are the
original u and W. The parentheses enclosing the names, ‘(u)’ and ‘(ubar)’, are there as
a reminder that these partons actually have been allowed to fragment. The partons are
still retained so that event histories can be studied. Also note that the KF (flavour code)
column contains 2 in the first line and —2 in the second. These are the codes actually
stored to denote the presence of a u and a 1, cf. the PY2ENT call, while the names written
are just conveniences used when producing visible output. The A and V near the end of the
particle/jet column indicate the beginning and end of a string (or cluster, or independent
fragmentation) parton system; any intermediate entries belonging to the same system
would have had an I in that column. (This gives a poor man’s representation of an
up-down arrow, [.)

In the orig (origin) column, the zeros indicate that u and U are two initial entries.
The subsequent line, number 3, denotes the fragmenting uu string system as a whole, and
has origin 1, since the first parton of this string system is entry number 1. The particles
in lines 4-10 have origin 3 to denote that they come directly from the fragmentation of
this string. In string fragmentation it is not meaningful to say that a particle comes from
only the u quark or only the T one. It is the string system as a whole that gives a p™, a
p,ant, aX’ aK ap, and a 7. Note that some of the particle names are again
enclosed in parentheses, indicating that these particles are not present in the final state
either, but have decayed further. Thus the 7~ in line 13 and the 7° in line 14 have origin
5, as an indication that they come from the decay of the p~ in line 5. Only the names
not enclosed in parentheses remain at the end of the fragmentation/decay chain, and
are thus experimentally observable. The actual status code used to distinguish between
different classes of entries is given in the KS column; codes in the range 1-10 correspond
to remaining entries, and those above 10 to those that have fragmented or decayed.

The columns with p_x, p-y, p-z, E and m are quite self-explanatory. All momenta,
energies and masses are given in units of GeV, since the speed of light is taken to be ¢ = 1.
Note that energy and momentum are conserved at each step of the fragmentation/decay
process (although there exist options where this is not true). Also note that the z axis
plays the role of preferred direction, along which the original partons are placed. The final
line is intended as a quick check that nothing funny happened. It contains the summed
charge, summed momentum, summed energy and invariant mass of the final entries at the
end of the fragmentation/decay chain, and the values should agree with the input implied
by the PY2ENT arguments. (In fact, warnings would normally appear on the output if
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anything untoward happened, but that is another story.)

The above example has illustrated roughly what information is to be had in the event
record, but not so much about how it is stored. This is better seen by using a 132-column
format for listing events. Try e.g. the following program

IMPLICIT DOUBLE PRECISION(A-H, 0-Z)
CALL PY3ENT(0,1,21,-1,30D0,0.9D0,0.7D0)
CALL PYLIST(2)

CALL PYEDIT(3)

CALL PYLIST(2)

END

where a 3-jet dgd event is generated in the first executable line and listed in the second.
This listing will contain the numbers as directly stored in the common block PYJETS

COMMON/PYJETS/N,NPAD,K (4000,5) ,P(4000,5) ,V(4000,5)

For particle I, K(I,1) thus gives information on whether or not a parton or particle has
fragmented or decayed, K(I,2) gives the particle code, K(I,3) its origin, K(I,4) and
K(I,5) the position of fragmentation/decay products, and P(I,1)-P(I,5) momentum,
energy and mass. The number of lines in current use is given by N, i.e. 1 < I < N. The
V matrix contains decay vertices; to view those PYLIST(3) has to be used. NPAD is a
dummy, needed to avoid some compiler troubles. It is important to learn the rules for
how information is stored in PYJETS.

The third executable line in the program illustrates another important point about
PYTHIA: a number of routines are available for manipulating and analyzing the event
record after the event has been generated. Thus PYEDIT(3) will remove everything except
stable charged particles, as shown by the result of the second PYLIST call. More advanced
possibilities include things like sphericity or clustering routines. PYTHIA also contains
some simple routines for histogramming, used to give self-contained examples of analysis
procedures.

Apart from the input arguments of subroutine calls, control on the doings of PYTHIA
may be imposed via many common blocks. Here sensible default values are always pro-
vided. A user might want to switch off all particle decays by putting MSTJ(21)=0 or
increase the s/u ratio in fragmentation by putting PARJ(2)=0.40D0, to give but two ex-
amples. It is by exploring the possibilities offered here that PYTHIA can be turned into
an extremely versatile tool, even if all the nice physics is already present in the default
values.

As a final, semi-realistic example, assume that the p, spectrum of 7% particles is to
be studied in 91.2 GeV ete™ annihilation events, where p, is to be defined with respect
to the sphericity axis. Using the internal routines for simple histogramming, a complete
program might look like

C...Double precision and integer declarations.
IMPLICIT DOUBLE PRECISION(A-H, 0-Z)
IMPLICIT INTEGER(I-N)

INTEGER PYK,PYCHGE,PYCOMP

C...Common blocks.
COMMON/PYJETS/N,NPAD,K (4000,5) ,P(4000,5),V(4000,5)

C...Book histograms.
CALL PYBOOK(1,’pT spectrum of pi+’,100,0D0,5D0)

C...Number of events to generate. Loop over events.
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NEVT=100
DO 110 IEVT=1,NEVT

C...Generate event. List first one.
CALL PYEEVT(0,91.2D0)
IF(IEVT.EQ.1) CALL PYLIST(1)

C...Find sphericity axis.
CALL PYSPHE(SPH,APL)

C...Rotate event so that sphericity axis is along z axis.
CALL PYEDIT(31)

C...Loop over all particles, but skip if not pi+.
DO 100 I=1,N
IF(K(I,2).NE.211) GOTO 100

C...Calculate pT and fill in histogram.
PT=SQRT(P(I,1)**2+P(I,2)**2)
CALL PYFILL(1,PT,1DO)

C...End of particle and event loops.
100  CONTINUE
110 CONTINUE

C...Normalize histogram properly and list it.
CALL PYFACT(1,20DO/NEVT)
CALL PYHIST

END

Study this program, try to understand what happens at each step, and run it to check
that it works. You should then be ready to look at the relevant sections of this report
and start writing your own programs.

3.6 Getting Started with the Event Generation Machinery

A run with the full PYTHIA event generation machinery has to be more strictly organized
than the simple examples above, in that it is necessary to initialize the generation before
events can be generated, and in that it is not possible to change switches and parameters
freely during the course of the run. A fairly precise recipe for how a run should be
structured can therefore be given.
Thus, the nowadays normal usage of PYTHIA can be subdivided into three steps.
1. The initialization step. It is here that all the basic characteristics of the coming
generation are specified. The material in this section includes the following.
e Declarations for double precision and integer variables and integer functions:
IMPLICIT DOUBLE PRECISION(A-H, 0-Z)
IMPLICIT INTEGER(I-N)
INTEGER PYK,PYCHGE,PYCOMP
e Common blocks, at least the following, and maybe some more:
COMMON/PYJETS/N,NPAD, K (4000,5) ,P(4000,5) ,V(4000,5)
COMMON/PYDAT1/MSTU(200) ,PARU(200) ,MSTJ(200) ,PARJ(200)
COMMON/PYSUBS/MSEL ,MSELPD,MSUB (500) ,KFIN(2,-40:40) ,CKIN(200)
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COMMON/PYPARS/MSTP (200) , PARP(200) ,MSTI (200) ,PARI (200)

e Selection of required processes. Some fixed ‘menus’ of subprocesses can be
selected with different MSEL values, but with MSEL=0 it is possible to compose
‘a la carte’, using the subprocess numbers. To generate processes 14, 18 and
29, for instance, one needs

MSEL=0

MSUB(14)=1
MSUB(18)=1
MSUB(29)=1

e Selection of kinematics cuts in the CKIN array. To generate hard scatterings

with 5 GeV < p, < 10 GeV, for instance, use

CKIN(3)=5D0

CKIN(4)=10D0
Unfortunately, initial- and final-state radiation will shift around the kinematics
of the hard scattering, making the effects of cuts less predictable. One therefore
always has to be very careful that no desired event configurations are cut out.

e Definition of underlying physics scenario, e.g. Higgs mass.

e Selection of parton-distribution sets, Q* definitions, and all other details of the
generation.

e Switching off of generator parts not needed for toy simulations, e.g. fragmen-
tation for parton level studies.

e Initialization of the event generation procedure. Here kinematics is set up,
maxima of differential cross sections are found for future Monte Carlo gen-
eration, and a number of other preparatory tasks carried out. Initialization
is performed by PYINIT, which should be called only after the switches and
parameters above have been set to their desired values. The frame, the beam
particles and the energy have to be specified, e.g.

CALL PYINIT(’CMS’,’p’,’pbar’,1800D0)

e Any other initial material required by you, e.g. histogram booking.

2. The generation loop. It is here that events are generated and studied. It includes
the following tasks:

e Generation of the next event, with

CALL PYEVNT
e Printing of a few events, to check that everything is working as planned, with
CALL PYLIST(1)

e An analysis of the event for properties of interest, either directly reading out in-
formation from the PYJETS common block or making use of the utility routines
in PYTHIA.

e Saving of events on disk or tape, or interfacing to detector simulation.

3. The finishing step. Here the tasks are:

e Printing a table of deduced cross sections, obtained as a by-product of the

Monte Carlo generation activity, with the command
CALL PYSTAT(1)

e Printing histograms and other user output.

To illustrate this structure, imagine a toy example, where one wants to simulate the
production of a 300 GeV Higgs particle. In PyTHIA, a program for this might look
something like the following.

C...Double precision and integer declarations.
IMPLICIT DOUBLE PRECISION(A-H, 0-Z)
IMPLICIT INTEGER(I-N)
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INTEGER PYK,PYCHGE,PYCOMP

. .Common blocks.
COMMON/PYJETS/N,NPAD,K (4000,5) ,P(4000,5),V(4000,5)
COMMON/PYDAT1/MSTU (200) ,PARU(200) ,MSTJ(200) ,PARJ(200)
COMMON/PYDAT2/KCHG (500,4) ,PMAS (500,4) ,PARF (2000) ,VCKM(4,4)
COMMON/PYDAT3/MDCY (500, 3) ,MDME (8000, 2) ,BRAT (8000) ,KFDP (8000, 5)
COMMON/PYSUBS/MSEL ,MSELPD, MSUB (500) ,KFIN(2,-40:40) ,CKIN(200)
COMMON/PYPARS/MSTP (200) ,PARP (200) ,MSTI (200) ,PARI (200)

. .Number of events to generate. Switch on proper processes.
NEV=1000
MSEL=0
MSUB(102)=1
MSUB(123)=1
MSUB(124)=1

..Select Higgs mass and kinematics cuts in mass.
PMAS(25,1)=300D0
CKIN(1)=290D0
CKIN(2)=310D0

..For simulation of hard process only: cut out unnecessary tasks.
MSTP (61)=0
MSTP(71)=0
MSTP(81)=0
MSTP(111)=0

..Initialize and list partial widths.
CALL PYINIT(’CMS’,’p’,’p’,14000D0)
CALL PYSTAT(2)

. .Book histogram.
CALL PYBOOK(1,’Higgs mass’,50,275D0,325D0)

. .Generate events. Look at first few.
DO 200 IEV=1,NEV
CALL PYEVNT
IF(IEV.LE.3) CALL PYLIST(1)

..Loop over particles to find Higgs and histogram its mass.
DO 100 I=1,N
IF(K(I,1).LT.20.AND.K(I,2) .EQ.25) HMASS=P(I,5)
100  CONTINUE
CALL PYFILL(1,HMASS,1DO)
200 CONTINUE

...Print cross sections and histograms.
CALL PYSTAT(1)
CALL PYHIST

END
Here 102, 123 and 124 are the three main Higgs production graphs gg — h, ZZ — h,

36



and WW — h, and MSUB(ISUB)=1 is the command to switch on process ISUB. Full
freedom to combine subprocesses ‘a la carte’ is ensured by MSEL=0; ready-made ‘menus’
can be ordered with other MSEL numbers. The PMAS command sets the mass of the Higgs,
and the CKIN variables the desired mass range of the Higgs — a Higgs with a 300 GeV
nominal mass actually has a fairly broad Breit—Wigner type mass distribution. The MSTP
switches that come next are there to modify the generation procedure, in this case to
switch off initial- and final-state radiation, multiple interactions among beam jets, and
fragmentation, to give only the ‘parton skeleton’ of the hard process. The PYINIT call
initializes PYTHIA, by finding maxima of cross sections, recalculating the Higgs decay
properties (which depend on the Higgs mass), etc. The decay properties can be listed
with PYSTAT(2).

Inside the event loop, PYEVNT is called to generate an event, and PYLIST(1) to list
the event. The information used by PYLIST(1) is the event record, stored in the common
block PYJETS. Here one finds all produced particles, both final and intermediate ones, with
information on particle species and event history (K array), particle momenta (P array)
and production vertices (V array). In the loop over all particles produced, 1 through N,
the Higgs particle is found by its code, K(I,2)=25, and its mass is stored in P(I,5).

After all events have been generated, PYSTAT (1) gives a summary of the number of
events generated in the various allowed channels, and the inferred cross sections.

In the run above, a typical event listing might look like the following.

Event listing (summary)

I particle/jet KF p_x p_y p_z E m

1 !p+! 2212 0.000 0.000 8000.000 8000.000 0.938

2 lpt! 2212 0.000 0.000-8000.000 8000.000 0.938

3 lIg! 21  -0.505 -0.229 28.553 28.558 0.000

4 Ig! 21 0.224 0.041 -788.073 788.073 0.000

5 Ig! 21  -0.505 -0.229 28.553 28.558 0.000

6 lg! 21 0.224 0.041 -788.073 788.073 0.000

7 'HO! 25 -0.281 -0.188 -759.520 816.631 300.027

8 !W+! 24 120.648 35.239 -397.843 424.829 80.023

9 Iw-! -24 -120.929 -35.426 -361.677 391.801 82.579

10 le+! -11 12.922 -4.760 -160.940 161.528 0.001
11 'nu_e! 12 107.726  39.999 -236.903 263.302 0.000
12 Is! 3 -62.423 7.195 -266.713 264.292 0.199
13 !cbar! -4 -58.506 -42.621 -104.963 127.509 1.350
14 (HO) 25 -0.281 -0.188 -759.520 816.631 300.027
15 (W+) 24 120.648  35.239 -397.843 424.829 80.023
16 (W-) -24 -120.929 -35.426 -361.677 391.801 82.579
17 et -11 12.922 -4.760 -160.940 161.528 0.001
18 nu_e 12 107.726  39.999 -236.903 263.302 0.000
19 s A 3 -62.423 7.195 -2566.713 264.292 0.199
20 cbar v -4 -58.506 -42.621 -104.963 127.509 1.350
21 ud_1 A 2103 -0.101 0.176 7971.328 7971.328 0.771
22 d v 1 -0.316 0.001 -87.390 87.390 0.010
23 u A 2 0.606 0.052 -0.751 0.967 0.006
24 uu_1l \Y 2203 0.092 -0.042-7123.668 7123.668 0.771
sum: 2.00 0.00 0.00 0.00 15999.98 15999.98
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The above event listing is abnormally short, in part because some columns of information
were removed to make it fit into this text, in part because all initial- and final-state QCD
radiation, all non-trivial beam jet structure, and all fragmentation was inhibited in the
generation. Therefore only the skeleton of the process is visible. In lines 1 and 2 one
recognizes the two incoming protons. In lines 3 and 4 are incoming partons before initial-
state radiation and in 5 and 6 after — since there is no such radiation they coincide here.
Line 7 shows the Higgs produced by gg fusion, 8 and 9 its decay products and 10-13 the
second-step decay products. Up to this point lines give a summary of the event history,
indicated by the exclamation marks that surround particle names (and also reflected in
the K(I,1) code, not shown). From line 14 onwards come the particles actually produced
in the final states, first in lines 14-16 particles that subsequently decayed, which have
their names surrounded by brackets, and finally the particles and partons left in the end,
including beam remnants. Here this also includes a number of unfragmented partons,
since fragmentation was inhibited. Ordinarily, the listing would have gone on for a few
hundred more lines, with the particles produced in the fragmentation and their decay
products. The final line gives total charge and momentum, as a convenient check that
nothing unexpected happened. The first column of the listing is just a counter, the second
gives the particle name and information on status and string drawing (the A and V), the
third the particle-flavour code (which is used to give the name), and the subsequent
columns give the momentum components.

One of the main problems is to select kinematics efficiently. Imagine for instance that
one is interested in the production of a single Z with a transverse momentum in excess of
50 GeV. If one tries to generate the inclusive sample of Z events, by the basic production
graphs qq — 7, then most events will have low transverse momenta and will have to be
discarded. That any of the desired events are produced at all is due to the initial-state
generation machinery, which can build up transverse momenta for the incoming q and
q. However, the amount of initial-state radiation cannot be constrained beforehand. To
increase the efficiency, one may therefore turn to the higher-order processes qg — Zq
and qq — Zg, where already the hard subprocess gives a transverse momentum to the
Z. This transverse momentum can be constrained as one wishes, but again initial- and
final-state radiation will smear the picture. If one were to set a p; cut at 50 GeV for
the hard-process generation, those events where the Z was given only 40 GeV in the hard
process but got the rest from initial-state radiation would be missed. Not only therefore
would cross sections come out wrong, but so might the typical event shapes. In the end,
it is therefore necessary to find some reasonable compromise, by starting the generation
at 30 GeV, say, if one knows that only rarely do events below this value fluctuate up to
50 GeV. Of course, most events will therefore not contain a Z above 50 GeV, and one will
have to live with some inefficiency. It is not uncommon that only one event out of ten
can be used, and occasionally it can be even worse.

If it is difficult to set kinematics, it is often easier to set the flavour content of a process.
In a Higgs study, one might wish, for example, to consider the decay h® — Z°Z° with
each Z° — ete™ or pu™pu~. It is therefore necessary to inhibit all other h® and Z° decay
channels, and also to adjust cross sections to take into account this change, all of which
is fairly straightforward. The same cannot be said for decays of ordinary hadrons, where
the number produced in a process is not known beforehand, and therefore inconsistencies
easily can arise if one tries to force specific decay channels.

In the examples given above, all run-specific parameters are set in the code (in the
main program; alternatively it could be in a subroutine called by the main program).
This approach is allowing maximum flexibility to change parameters during the course
of the run. However, in many experimental collaborations one does not want to allow
this freedom, but only one set of parameters, to be read in from an external file at the
beginning of a run and thereafter never changed. This in particular applies when PyYTHIA
is to be linked with other libraries, such as GEANT [Bru89] and detector-specific software.
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While a linking of a normal-sized main program with PYTHIA is essentially instantaneous
on current platforms (typically less than a second), this may not hold for other libraries.
For this purpose one then needs a parser of PYTHIA parameters, the core of which can
be provided by the PYGIVE routine.

As an example, consider a main program of the form

C...Double precision and integer declarations.
IMPLICIT DOUBLE PRECISION(A-H, 0-Z)
IMPLICIT INTEGER(I-N)
INTEGER PYK,PYCHGE,PYCOMP
C...Input and output strings.
CHARACTER FRAME*12,BEAMx*12,TARGET*12,PARAM*100

C...Read parameters for PYINIT call.
READ(*,*) FRAME,BEAM, TARGET,ENERGY

C...Read number of events to generate, and to print.
READ(*,*) NEV,NPRT

C...Loop over reading and setting parameters/switches.
100 READ(*,’ (A)’,END=200) PARAM
CALL PYGIVE(PARAM)
GOTO 100

C...Initialize PYTHIA.
200 CALL PYINIT(FRAME,BEAM, TARGET,ENERGY)

(@]

...Event generation loop
DO 300 IEV=1,NEV
CALL PYEVNT
IF(IEV.LE.NPRT) CALL PYLIST(1)
300 CONTINUE

C...Print cross sectiomns.
CALL PYSTAT(1)

END
and a file indata with the contents

CMS,p,p,14000.

1000,3
I below follows commands sent to PYGIVE
MSEL=0 I Mix processes freely

MSUB(102)=1
MSUB(123)=1
MSUB(124)=1
PMAS (25,1)=300.
CKIN(1)=290.
CKIN(2)=310.

g+ g ->ho

Z0 + Z0 -> hO

W+ + W= -=> hO

Higgs mass

lower cutoff on mass
upper cutoff on mass

MSTP(61)=0 no initial-state showers
MSTP(71)=0 no final-state showers
MSTP(81)=0 no multiple interactions

MSTP(111)=0 no hadronization
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Here the text following the exclamation marks is interpreted as a comment by PYGIVE, and
thus purely intended to allow better documentation of changes. The main program could
then be linked to PYTHIA, to an executable a.out, and run e.g. with a Unix command
line

a.out < indata > output

to produce results on the file output. Here the indata could be changed without requiring
a recompilation. Of course, the main program would have to be more realistic, e.g. with
events saved to disk or tape, but the principle should be clear.
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4 Monte Carlo Techniques

Quantum mechanics introduces a concept of randomness in the behaviour of physical
processes. The virtue of event generators is that this randomness can be simulated by
the use of Monte Carlo techniques. In the process, the program authors have to use some
ingenuity to find the most efficient way to simulate an assumed probability distribution.
A detailed description of possible techniques would carry us too far, but in this section
some of the most frequently used approaches are presented, since they will appear in
discussions in subsequent sections. Further examples may be found e.g. in [Jam80].
First of all one assumes the existence of a random number generator. This is a (For-
tran) function which, each time it is called, returns a number R in the range between 0
and 1, such that the inclusive distribution of numbers R is flat in the range, and such that
different numbers R are uncorrelated. The random number generator that comes with
PyTHIA is described at the end of this section, and we defer the discussion until then.

4.1 Selection From a Distribution

The situation that is probably most common is that we know a function f(x) which is
non-negative in the allowed z range z,in < © < Tna. We want to select an x ‘at random’
so that the probability in a small interval dz around a given x is proportional to f(z)dz.
Here f(x) might be a fragmentation function, a differential cross section, or any of a
number of distributions.

One does not have to assume that the integral of f(z) is explicitly normalized to unity:
by the Monte Carlo procedure of picking exactly one accepted x value, normalization is
implicit in the final result. Sometimes the integral of f(z) does carry a physics content
of its own, as part of an overall weight factor we want to keep track of. Consider, for
instance, the case when x represents one or several phase-space variables and f(z) a
differential cross section; here the integral has a meaning of total cross section for the
process studied. The task of a Monte Carlo is then, on the one hand, to generate events
one at a time, and, on the other hand, to estimate the total cross section. The discussion
of this important example is deferred to section 7.4.

If it is possible to find a primitive function F(x) which has a known inverse F~!(z),
an z can be found as follows (method 1):

x max

(x)dz =R ' f(z)dx

ZTmin Zmin

— = F Y (F(2min) + ROF(Tmax) — F(Tmin))) - (2)

The statement of the first line is that a fraction R of the total area under f(x) should be
to the left of x. However, seldom are functions of interest so nice that the method above
works. It is therefore necessary to use more complicated schemes.

Special tricks can sometimes be found. Consider e.g. the generation of a Gaussian
f(x) = exp(—z?). This function is not integrable, but if we combine it with the same
Gaussian distribution of a second variable y, it is possible to transform to polar coordinates

f(z)dz f(y) dy = exp(—2® — y*) dedy = rexp(—r?) drde , (3)

and now the r and ¢ distributions may be easily generated and recombined to yield .
At the same time we get a second number y, which can also be used. For the generation
of transverse momenta in fragmentation, this is very convenient, since in fact we want to
assign two transverse degrees of freedom.

If the maximum of f(z) is known, f(x) < funax in the z range considered, a hit-or-miss
method will always yield the correct answer (method 2):
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1. select an x with even probability in the allowed range, i.e. = Zyin+ R(ZTmax — Tmin);

2. compare a (new) R with the ratio f(x)/fmax; if f(2)/fmax < R, then reject the z

value and return to point 1 for a new try;

3. otherwise the most recent x value is retained as final answer.

The probability that f(z)/fmax > R is proportional to f(x); hence the correct distribution
of retained x values. The efficiency of this method, i.e. the average probability that an
x will be retained, is ([ f(z)dx)/(fmax(Tmax — Tmin)). The method is acceptable if this
number is not too low, i.e. if f(x) does not fluctuate too wildly.

Very often f(z) does have narrow spikes, and it may not even be possible to define
an fpac. An example of the former phenomenon is a function with a singularity just
outside the allowed region, an example of the latter an integrable singularity just at the
Tmin and/or Ty, borders. Variable transformations may then be used to make a function
smoother. Thus a function f(z) which blows up as 1/x for  — 0, with an z,;, close to
0, would instead be roughly constant if transformed to the variable y = In x.

The variable transformation strategy may be seen as a combination of methods 1 and
2, as follows. Assume the existence of a function g(z), with f(x) < g(z) over the x range
of interest. Here g(z) is picked to be a ‘simple’ function, such that the primitive function
G(x) and its inverse G~!(z) are known. Then (method 3):

1. select an z according to the distribution g(x), using method 1;

2. compare a (new) R with the ratio f(x)/g(x); if f(x)/g(x) < R, then reject the z

value and return to point 1 for a new try;

3. otherwise the most recent x value is retained as final answer.

This works, since the first step will select x with a probability ¢g(z)dx = dG(z) and the
second retain this choice with probability f(z)/g(x). The total probability to pick a value
x is then just the product of the two, i.e. f(x)dz.

If f(z) has several spikes, method 3 may work for each spike separately, but it may
not be possible to find a g(z) that covers all of them at the same time, and which still
has an invertible primitive function. However, assume that we can find a function g(x) =
> gi(z), such that f(z) < g(z) over the x range considered, and such that the functions
gi(x) each are non-negative and simple, in the sense that we can find primitive functions
and their inverses. In that case (method 4):

1. select an ¢ at random, with relative probability given by the integrals

L7 0:@) o = Gl = Gilmin) 4

min

2. for the i selected, use method 1 to find an z, i.e.
T = Gz‘_l(Gi(xmin) + R(Gi(%max) — Gi(Tmin))) ; (5)

3. compare a (new) R with the ratio f(x)/g(x); if f(x)/g(x) < R, then reject the z

value and return to point 1 for a new try;

4. otherwise the most recent x value is retained as final answer.

This is just a trivial extension of method 3, where steps 1 and 2 ensure that, on the
average, each x value picked there is distributed according to g(z): the first step picks i
with relative probability [ g;(x) dzx, the second x with absolute probability g;(z)/ | g;(x) dx
(this is one place where one must remember to do normalization correctly); the product
of the two is therefore g;(x) and the sum over all i gives back g(x).

We have now arrived at an approach that is sufficiently powerful for a large selection
of problems. In general, for a function f(z) which is known to have sharp peaks in a few
different places, the generic behaviour at each peak separately may be covered by one
or a few simple functions g;(x), to which one adds a few more g;(z) to cover the basic
behaviour away from the peaks. By a suitable selection of the relative strengths of the
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different g;’s, it is possible to find a function g(z) that matches well the general behaviour
of f(z), and thus achieve a reasonable Monte Carlo efficiency.

The major additional complication is when z is a multidimensional variable. Usually
the problem is not so much f(z) itself, but rather that the phase-space boundaries may
be very complicated. If the boundaries factorize it is possible to pick phase-space points
restricted to the desired region. Otherwise the region may have to be inscribed in a hyper-
rectangle, with points picked within the whole hyper-rectangle but only retained if they
are inside the allowed region. This may lead to a significant loss in efficiency. Variable
transformations may often make the allowed region easier to handle.

There are two main methods to handle several dimensions, each with its set of vari-
ations. The first method is based on a factorized ansatz, i.e. one attempts to find a
function g(x) which is everywhere larger than f(x), and which can be factorized into
9(x) = gW(z1) gP(22) -+ - g™ (2,), where x = (x1,29,...,2,). Here each g\ (z;) may
in its turn be a sum of functions gi(j ), as in method 4 above. First, each z; is selected
independently, and afterwards the ratio f(x)/g(x) is used to determine whether to retain
the point.

The second method is useful if the boundaries of the allowed region can be written in
a form where the maximum range of z; is known, the allowed range of x5 only depends
on x1, that of 3 only on x; and x5, and so on until z,,, whose range may depend on all
the preceding variables. In that case it may be possible to find a function g(x) that can
be integrated over x5 through x,, to yield a simple function of x, according to which x; is
selected. Having done that, x5 is selected according to a distribution which now depends
on xq, but with x3 through x,, integrated over. In particular, the allowed range for z, is
known. The procedure is continued until z,, is reached, where now the function depends
on all the preceding x; values. In the end, the ratio f(x)/g(x) is again used to determine
whether to retain the point.

4.2 The Veto Algorithm

The ‘radioactive decay’ type of problems is very common, in particular in parton showers,
but it is also used, e.g. in the multiple interactions description in PYTHIA. In this kind
of problems there is one variable ¢, which may be thought of as giving a kind of time axis
along which different events are ordered. The probability that ‘something will happen’
(a nucleus decay, a parton branch) at time ¢ is described by a function f(t), which is
non-negative in the range of ¢ values to be studied. However, this naive probability is
modified by the additional requirement that something can only happen at time ¢ if it
did not happen at earlier times ' < ¢. (The original nucleus cannot decay once again
if it already did decay; possibly the decay products may decay in their turn, but that is
another question.)

The probability that nothing has happened by time ¢ is expressed by the function
N (t) and the differential probability that something happens at time ¢ by P(t). The
basic equation then is

dNV
P(t) = ——-=FO)N({) . (6)
For simplicity, we shall assume that the process starts at time ¢t = 0, with A/(0) = 1.
The above equation can be solved easily if one notes that ANV /N = dIn N:

N(t) = N(0) exp{— Ji ") dt’} :exp{— / ") dt'} , (7)

and thus

P = fexp{~ [ s)ar} . ®
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With f(t) = c this is nothing but the textbook formulae for radioactive decay. In partic-
ular, at small times the correct decay probability, P(t), agrees well with the input one,
f(t), since the exponential factor is close to unity there. At larger ¢, the exponential
gives a dampening which ensures that the integral of P(t) never can exceed unity, even
if the integral of f(¢) does. The exponential can be seen as the probability that nothing
happens between the original time 0 and the final time ¢. In the parton-shower language,
this corresponds to the so-called Sudakov form factor.

If f(t) has a primitive function with a known inverse, it is easy to select ¢ values
correctly:

/Otm') A = N(0) = N(t) = 1 - exp { - /Ot fyarh=1-R, (9)
which has the solution
F(0)-Ft)=InR = t=FYF0)—InR). (10)

If f(t) is not sufficiently nice, one may again try to find a better function g(t), with
f(t) < g(t) for all t > 0. However to use method 3 with this g(¢) would not work, since
the method would not correctly take into account the effects of the exponential term in
P(t). Instead one may use the so-called veto algorithm:

1. start with ¢ = 0 and ¢y = 0;

2. add 1 to i and select t; = G (G(t;_1) — In R), i.e. according to g(t), but with the

constraint that ¢; > t;_q,

3. compare a (new) R with the ratio f(¢;)/g(t;); if f(t;)/g(t;) < R, then return to

point 2 for a new try;

4. otherwise t; is retained as final answer.

It may not be apparent why this works. Consider, however, the various ways in which
one can select a specific time t. The probability that the first try works, ¢t = ¢y, i.e. that
no intermediate ¢ values need be rejected, is given by

t / / f(t) t / /!
Polt) = exp {~ [ gty dt'} g0 23 = fyexn{~ [grar} . ()
0 g(t) 0
where the exponential times g(t) comes from eq. (8) applied to g, and the ratio f(t)/g(t)
is the probability that t is accepted. Now consider the case where one intermediate time
ty is rejected and t = 5 is only accepted in the second step. This gives

X0 :/Ot dt, exp{—/otlg(t/) dt'}g(tl) l1 - J;Em exp{—/:g(t') dt’} g(t)% L (12)

where the first exponential times g(t;) gives the probability that ¢; is first selected, the
square brackets the probability that t; is subsequently rejected, the following piece the
probability that ¢ = t, is selected when starting from t;, and the final factor that ¢ is
retained. The whole is to be integrated over all possible intermediate times ¢;. The
exponentials together give an integral over the range from 0 to ¢, just as in Py, and the
factor for the final step being accepted is also the same, so therefore one finds that

Pu(t) = Polt) [ s () = S(0)] (13)

This generalizes. In P, one has to consider two intermediate times, 0 < t; <ty < t3 =1,
and so

Pat) = Polt) [ dtrly(t) - f(t2)] [ dtalg(t) — (2
1 2

= oty ([ lo) - s ar) (14)
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The last equality is most easily seen if one also considers the alternative region 0 <ty <
t; < t, where the roles of t; and t, have just been interchanged, and the integral therefore
has the same value as in the region considered. Adding the two regions, however, the
integrals over ¢; and t5 decouple, and become equal. In general, for P;, the ¢ intermediate
times can be ordered in ¢! different ways. Therefore the total probability to accept ¢, in
any step, is

Pl = 3P0 =203 3 ([ 1) - rar)

= swen{- [ oeyaryen| [ @) - o))

= jwen{- [ feyar} (15)

which is the desired answer.

If the process is to be stopped at some scale t,,.y, i.e. if one would like to remain
with a fraction N (fmay) of events where nothing happens at all, this is easy to include in
the veto algorithm: just iterate upwards in ¢ at usual, but stop the process if no allowed
branching is found before #,,.x.

Usually f(¢) is a function also of additional variables x. The methods of the preceding
section are easy to generalize if one can find a suitable function ¢(¢,x) with f(¢,xz) <
g(t,z). The g(t) used in the veto algorithm is the integral of g(t,x) over x. Each time
a t; has been selected also an z; is picked, according to g(¢;, z) dz, and the (¢, z) point is
accepted with probability f(¢;, x;)/g(t;, z;).

4.3 The Random Number Generator

In recent years, progress has been made in constructing portable generators with large
periods and other good properties; see the review [Jam90]. Therefore the current version
contains a random number generator based on the algorithm proposed by Marsaglia,
Zaman and Tsang [Mar90]. This routine should work on any machine with a mantissa
of at least 48 digits, i.e. on computers with a 64-bit (or more) representation of double
precision real numbers. Given the same initial state, the sequence will also be identical
on different platforms. This need not mean that the same sequence of events will be
generated, since the different treatments of roundoff errors in numerical operations will
lead to slightly different real numbers being tested against these random numbers in IF
statements. Also code optimization may lead to a divergence of the event sequence.

Apart from nomenclature issues, the coding of PYR as a function rather than a sub-
routine, and the extension to double precision, the only difference between our code and
the code given in [Jam90] is that slightly different algorithms are used to ensure that the
random number is not equal to 0 or 1 within the machine precision. Further developments
of the algorithm has been proposed [Liis94] to remove residual possibilities of small long-
range correlations, at the price of a slower generation procedure. However, given that
PYTHIA is using random numbers for so many different tasks, without any fixed cycle,
this has been deemed unnecessary.

The generator has a period of over 10*®, and the possibility to obtain almost 10°
different and disjoint subsequences, selected by giving an initial integer number. The
price to be paid for the long period is that the state of the generator at a given moment
cannot be described by a single integer, but requires about 100 words. Some of these
are real numbers, and are thus not correctly represented in decimal form. The old-style
procedure, which made it possible to restart the generation from a seed value written to
the run output, is therefore not convenient. The CERN library implementation keeps
track of the number of random numbers generated since the start. With this value saved,
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in a subsequent run the random generator can be asked to skip ahead the corresponding
number of random numbers. PYTHIA is a heavy user of random numbers, however:
typically 30% of the full run time is spent on random number generation. Of this, half is
overhead coming from the function call administration, but the other half is truly related
to the speed of the algorithm. Therefore a skipping ahead would take place with 15% of
the time cost of the original run, i.e. an uncomfortably high figure.

Instead a different solution is chosen here. Two special routines are provided for
writing and reading the state of the random number generator (plus some initialization
information) on a sequential file, in a platform-dependent internal representation. The file
used for this purpose has to be specified by you, and opened for read and write. A state
is written as a single record, in free format. It is possible to write an arbitrary number of
states on a file, and a record can be overwritten, if so desired. The event generation loop
might then look something like:

1. save the state of the generator on file (using flag set in point 3 below),

2. generate an event,

3. study the event for errors or other reasons why to regenerate it later; set flag to
overwrite previous generator state if no errors, otherwise set flag to create new
record;

4. loop back to point 1.

With this procedure, the file will contain the state before each of the problematical events.
These events can therefore be generated in a shorter run, where further information can
be printed. (Inside PYTHIA, some initialization may take place in connection with the
very first event generated in a run, so it may be necessary to generate one ordinary
event before reading in a saved state to generate the interesting events.) An alternative
approach might be to save the state every 100 events or so. If the events are subsequently
processed through a detector simulation, you may have to save also other sets of seeds,
naturally.

Unfortunately, the procedure is not always going to work. For instance, if cross section
maximum violations have occured before the interesting event in the original run, there is
a possibility that another event is picked in the re-started one, where the maximum weight
estimate has not been updated. Another problem is the multiple interaction machinery,
where some of the options contain an element of learning, which again means that the
event sequence may be broken.

In addition to the service routines, the common block which contains the state of the
generator is available for manipulation, if you so desire. In particular, the initial seed
value is by default 19780503, i.e. different from the Marsaglia/CERN default 54217137.
It is possible to change this value before any random numbers have been generated, or to
force re-initialization in mid-run with any desired new seed.

It should be noted that, of course, the appearance of a random number generator
package inside PYTHIA does in no way preclude the use of other routines. You can easily
revert to having PYR as nothing but an interface to an arbitrary external random number
generator; e.g. to call a routine RNDM all you need to have is

FUNCTION PYR(IDUMMY)

IMPLICIT DOUBLE PRECISION(A-H, 0-Z)
100 PYR=RNDM(IDUMMY)

IF(PYR.LE.ODO.OR.PYR.GE.1D0O) GOTO 100

RETURN

END

The random generator subpackage consists of the following components.

R = PYR(IDUMMY)
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Purpose:

IDUMMY

to generate a (pseudo)random number R uniformly in the range 0<R<1, i.e.
excluding the endpoints.
dummy input argument; normally 0.

CALL PYRGET(LFN,MOVE)

Purpose:

LFN :

MOVE :

to dump the current state of the random number generator on a separate file,
using internal representation for real and integer numbers. To be precise, the
full contents of the PYDATR common block are written on the file, with the
exception of MRPY(6).

(logical file number) the file number to which the state is dumped. You must
associate this number with a true file (with a platform-dependent name), and
see to it that this file is open for write.

choice of adding a new record to the file or overwriting old record(s). Normally
only options 0 or —1 should be used.

= 0 (or > 0) : add a new record to the end of the file.

= -1 :  overwrite the last record with a new one (i.e. do one BACKSPACE before
the new write).
= —n : back up n records before writing the new record. The records following

after the new one are lost, i.e. the last n old records are lost and one new
added.

CALL PYRSET(LFN,MQOVE)

Purpose:

LFN :

MOVE :

nn
+ ©
S ..

to read in a state for the random number generator, from which the subsequent
generation can proceed. The state must previously have been saved by a
PYRGET call. Again the full contents of the PYDATR common block are read,
with the exception of MRPY(6).
(logical file number) the file number from which the state is read. You must
associate this number with a true file previously written with a PYRGET call,
and see to it that this file is open for read.
positioning in file before a record is read. With zero value, records are read one
after the other for each new call, while non-zero values may be used to navigate
back and forth, and e.g. return to the same initial state several times.

read the next record.

skip ahead n records before reading the record that sets the state of the

random number generator.

= —n :  back up n records before reading the record that sets the state of the

random number generator.

COMMON/PYDATR/MRPY (6) ,RRPY (100)

Purpose:

MRPY (1)

to contain the state of the random number generator at any moment (for
communication between PYR, PYRGET and PYRSET), and also to provide you
with the possibility to initialize different random number sequences, and to
know how many numbers have been generated.

: (D=19780503) the integer number that specifies which of the possible subse-

quences will be initialized in the next PYR call for which MRPY(2)=0. Allowed
values are 0<MRPY (1) <900 000 000, the original Marsaglia (and CERN library)
seed is 54217137. The MRPY(1) value is not changed by any of the PyTHIA
routines.
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MRPY(2) : (D=0) initialization flag, put to 1 in the first PYR call of run. A re-initialization
of the random number generator can be made in mid-run by resetting MRPY (2)
to 0 by hand. In addition, any time the counter MRPY (3) reaches 1000000000,
it is reset to 0 and MRPY(2) is increased by 1.

MRPY(3) : (R) counter for the number of random numbers generated from the beginning
of the run. To avoid overflow when very many numbers are generated, MRPY (2)
is used as described above.

MRPY(4), MRPY(5) : I97 and J97 of the CERN library implementation; part of the state
of the generator.

MRPY(6) : (R) current position, i.e. how many records after beginning, in the file; used
by PYRGET and PYRSET.

RRPY (1) - RRPY(97) : the U array of the CERN library implementation; part of the
state of the generator.

RRPY(98) - RRPY(100) : C, CD and CM of the CERN library implementation; the first
part of the state of the generator, the latter two constants calculated at ini-
tialization.
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5 The Event Record

The event record is the central repository for information about the particles produced in
the current event: flavours, momenta, event history, and production vertices. It plays a
very central role: without a proper understanding of what the record is and how informa-
tion is stored, it is meaningless to try to use PYTHIA. The record is stored in the common
block PYJETS. Almost all the routines that the user calls can be viewed as performing
some action on the record: fill a new event, let partons fragment or particles decay, boost
it, list it, find clusters, etc.

In this section we will first describe the KF flavour code, subsequently the PYJETS
common block, and then give a few comments about the role of the event record in the
programs.

To ease the interfacing of different event generators, a HEPEVT standard common block
structure for the event record has been agreed on. For historical reasons the standard
common blocks are not directly used in PYTHIA, but a conversion routine comes with the
program, and is described at the end of this section.

5.1 Particle Codes

The Particle Data Group particle code [PDG88, PDG92, PDGO00] is used consistently
throughout the program. Almost all known discrepancies between earlier versions of the
PDG standard and the PyTHIA usage have now been resolved. The one known exception is
the (very uncertain) classification of f,(980), with fy(1370) also affected as a consequence.
There is also a possible point of confusion in the technicolor sector between 7'y, and
M- The latter is retained for historical reasons, whereas the former was introduced for
consistency in models of top—color—assisted technicolor. The PDG standard, with the
local PYTHIA extensions, is referred to as the KF particle code. This code you have to be
thoroughly familiar with. It is described below.

The KF code is not convenient for a direct storing of masses, decay data, or other
particle properties, since the KF codes are so spread out. Instead a compressed code KC
between 1 and 500 is used here. A particle and its antiparticle are mapped to the same
KC code, but else the mapping is unique. Normally this code is only used at very specific
places in the program, not visible to the user. If need be, the correspondence can always
be obtained by using the function PYCOMP, i.e. KC = PYCOMP(KF). This mapping is not
hardcoded, but can be changed by user intervention, e.g. by introducing new particles
with the PYUPDA facility. It is therefore not intended that you should ever want or need
to know any KC codes at all. It may be useful to know, however, that for codes smaller
than 80, KF and KC agree. Normally a user would never do the inverse mapping, but we
note that this is stored as KF = KCHG(KC,4), making use of the KCHG array in the PYDAT2
common block. Of course, the sign of a particle could never be recovered by this inverse
operation.

The particle names printed in the tables in this section correspond to the ones obtained
with the routine PYNAME, which is used extensively, e.g. in PYLIST. Greek characters
are spelt out in full, with a capital first letter to correspond to a capital Greek letter.
Generically the name of a particle is made up of the following pieces:

1. The basic root name. This includes a * for most spin 1 (L = 0) mesons and spin
3/2 baryons, and a ’ for some spin 1/2 baryons (where there are two states to be
distinguished, cf. A-X°). The rules for heavy baryon naming are in accordance with
the 1986 Particle Data Group conventions [PDG86]. For mesons with one unit of
orbital angular momentum, K (D, B, ...) is used for quark-spin 0 and K* (D*, B*,
... ) for quark-spin 1 mesons; the convention for ‘“*’ may here deviate slightly from
the one used by the PDG.
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Table 5: Quark and lepton codes.

KF | Name | Printed || KF | Name | Printed
1 d d 11 e~ e-
2 u u 12 Ve nu_e
3 S S 13| w~ mu-

4 c c 14 vy nu_mu
5 b b 15 T~ tau-
6 t t 16 vy nu_tau
7 b’ b’ 17 7/ tau’
8 t/ t’ 18| v, |nu’_tau
9 19

10 20

2. Any lower indices, separated from the root by a _. For heavy hadrons, this is the
additional heavy-flavour content not inherent in the root itself. For a diquark, it is
the spin.

3. The characters ‘bar’ for an antiparticle, wherever the distinction between particle
and antiparticle is not inherent in the charge information.

4. Charge information: ++, 4, 0, —, or ——. Charge is not given for quarks or diquarks.
Some neutral particles which are customarily given without a 0 also here lack it,
such as neutrinos, g, 7, and flavour-diagonal mesons other than 7° and p°. Note
that charge is included both for the proton and the neutron. While non-standard,
it is helpful in avoiding misunderstandings when looking at an event listing.

Below follows a list of KF particle codes. The list is not complete; a more extensive one
may be obtained with CALL PYLIST(11). Particles are grouped together, and the basic
rules are described for each group. Whenever a distinct antiparticle exists, it is given the
same KF code with a minus sign (whereas KC codes are always positive).

1. Quarks and leptons, Table 5.

This group contains the basic building blocks of matter, arranged according to
family, with the lower member of weak isodoublets also having the smaller code
(thus d precedes u). A fourth generation is included as part of the scenarios for
exotic physics. The quark codes are used as building blocks for the diquark, meson
and baryon codes below.

2. Gauge bosons and other fundamental bosons, Table 6.

This group includes all the gauge and Higgs bosons of the standard model, as well
as some of the bosons appearing in various extensions of it. They correspond to
one extra U(1) and one extra SU(2) group, a further Higgs doublet, a graviton,
a horizontal gauge boson R (coupling between families), and a (scalar) leptoquark
Lq.

3. Exotic particle codes.

The positions 43-80 are used as temporary sites for exotic particles that eventually
may be shifted to a separate code sequence. Currently this list is empty. The ones
not in use are at your disposal (but with no guarantees that they will remain so).

4. Various special codes, Table 7.

In a Monte Carlo, it is always necessary to have codes that do not correspond to
any specific particle, but are used to lump together groups of similar particles for
decay treatment (nowadays largely obsolete), to specify generic decay products (also
obsolete), or generic intermediate states in external processes, or additional event
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Table 6: Gauge boson and other fundamental boson codes.

KF | Name | Printed || KF | Name | Printed
21 g g 31
22 0 gamma | 32 | Z" Z°0
23 | Z° Z0 33| 7" Z"0
24 | W+ W+ 34 | W't W2+
25| ho hO 35| H° HO
26 36| A° A0
27 37| H* H+
28 38
29 39 G Graviton
30 40
41| R RO
42 | Lqg LQ

record information from jet searches. These codes, which again are non-standard,
are found between numbers 81 and 100.

The junction, code 88, is not a physical particle but marks the place in the event
record where three string pieces come together in a point, e.g. a Y-shaped topol-
ogy with a quark at each end. No distinction is made between a junction and an
antijunction, i.e. whether a baryon or an antibaryon is going to be produced in the
neighbourhood of the junction.

. Diquark codes, Table 8.

A diquark made up of a quark with code 7 and another with code j, where i > j,
and with total spin s, is given the code

KF = 10007 + 1005 +2s + 1, (16)

i.e. the tens position is left empty (cf. the baryon code below). Some of the most
frequently used codes are listed in the table. All the lowest-lying spin 0 and 1
diquarks are included in the program.

. Meson codes, Tables 9 and 10.

A meson made up of a quark with code ¢ and an antiquark with code —j, j # 1,
and with total spin s, is given the code

KF = {100 max(i, j) + 10 min(i, j) + 2s 4 1} sign(i — j) (—1)m>@9) | (17)

assuming it is not orbitally or radially excited. Note the presence of an extra — sign
if the heaviest quark is a down-type one. This is in accordance with the particle—
antiparticle distinction adopted in the 1986 Review of Particle Properties [PDG86].
It means for example that a B meson contains a b antiquark rather than a b quark.
The flavour-diagonal states are arranged in order of ascending mass. Thus the
obvious generalization of eq. (17) to KF = 110i + 2s + 1 is only valid for charm and
bottom. The lighter quark states can appear mixed, e.g. the 7% (111) is an equal
mixture of dd (naively code 111) and ul (naively code 221).

The standard rule of having the last digit of the form 2s+1 is broken for the Kg-K¢
system, where it is 0, and this convention should carry over to mixed states in the
B meson system, should one choose to define such. For higher multiplets with the
same spin, +10000, 420000, etc., are added to provide the extra distinction needed.
Some of the most frequently used codes are given below.
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Table 7: Various special codes.

KF | Printed Meaning

81 | specflav Spectator flavour; used in decay-product listings
82 | rndmflav | A random u, d, or s flavour; possible decay product
83 | phasespa Simple isotropic phase-space decay

84 | c-hadron Information on decay of generic charm hadron
85 | b-hadron Information on decay of generic bottom hadron
86

87

88 | junction A junction of three string pieces

89 (internal use for unspecified resonance data)
90 system Intermediate pseudoparticle in external process
91 | cluster Parton system in cluster fragmentation

92 string Parton system in string fragmentation

93 indep. Parton system in independent fragmentation
94 | CMshower Four-momentum of time-like showering system
95 | SPHEaxis Event axis found with PYSPHE

96 | THRUaxis Event axis found with PYTHRU

97 | CLUSjet Jet (cluster) found with PYCLUS

98 | CELLjet Jet (cluster) found with PYCELL

99 table Tabular output from PYTABU

100

The full lowest-lying pseudoscalar and vector multiplets are included in the program,
Table 9.

Also the lowest-lying orbital angular momentum L = 1 mesons are included, Table
10: one pseudovector multiplet obtained for total quark-spin 0 (L = 1,5 = 0 =
J = 1) and one scalar, one pseudovector and one tensor multiplet obtained for total
quark-spin 1 (L = 1,9 =1 = J = 0,1 or 2), where J is what is conventionally
called the spin s of the meson. Any mixing between the two pseudovector multiplets
is not taken into account. Please note that some members of these multiplets have
still not been found, and are included here only based on guesswork. Even for known
ones, the information on particles (mass, width, decay modes) is highly incomplete.

Table 8: Diquark codes. For brevity, diquarks containing ¢ or b quarks are not
listed, but are defined analogously.

KF | Name | Printed | KF | Name | Printed
1103 | dd; dd_1
2101 | udg ud_0 2103 | ud ud_1
2203 | uuy uu_1
3101 | sdg sd_0 3103 | sdy sd_1
3201 | sug su.0 3203 | suy su_1l
3303 Ssy ss_1
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Table 9: Meson codes, part 1.

KF | Name | Printed || KF | Name | Printed
211 | «* pi+ 213 | pt rho+

311 K° KO 313 | K* K*0
321 | KT K+ 323 | K** K+
411 | Dt D+ 413 | D** Dx+
421 | D° DO 423 | D* D0
431 | Df Ds+ | 433 | DIt D*_s+
511 B BO 513 | B* B*0
521 | BT B+ 523 | B*t B+

531 | B° B_sO 533 | B Bx_s0

S S

541 | BF B_c+ 543 | B*t B*_c+

111 0 pio 113 P° rho0
221 n eta 223 w omega
331 n eta’ 333 o) phi

441 | ne etac | 443 | J/¢ J/psi

951 | My etab || 553 T Upsilon
130 | K? K_LO
310 | K§ K_S0

Only two radial excitations are included, the ¢/ = 1(25) and Y’ = T(25).
7. Baryon codes, Table 11.
A baryon made up of quarks ¢, j and k, with ¢ > j > k, and total spin s, is given
the code
KF = 10002 + 1005 4+ 10k +2s + 1 . (18)

An exception is provided by spin 1/2 baryons made up of three different types of
quarks, where the two lightest quarks form a spin-0 diquark (A-like baryons). Here
the order of the 57 and k quarks is reversed, so as to provide a simple means of
distinction to baryons with the lightest quarks in a spin-1 diquark (3-like baryons).
For hadrons with heavy flavours, the root names are Lambda or Sigma for hadrons
with two u or d quarks, Xi for those with one, and Omega for those without u or d
quarks.
Some of the most frequently used codes are given in Table 11. The full lowest-lying
spin 1/2 and 3/2 multiplets are included in the program.

8. QCD effective states, Table 12.
We here include the pomeron IP and reggeon IR ‘particles’, which are important e.g.
in the description of diffractive scattering, but do not have a simple correspondence
with other particles in the classification scheme.
Also included are codes to be used for denoting diffractive states in PYTHIA, as part
of the event history. The first two digits here are 99 to denote the non-standard
character. The second, third and fourth last digits give flavour content, while the
very last one is 0, to denote the somewhat unusual character of the code. Only a
few codes have been introduced with names; depending on circumstances these also
have to double up for other diffractive states. Other diffractive codes for strange
mesons and baryon beams are also accepted by the program, but do not give nice
printouts.

9. Supersymmetric codes, Table 13.

23



Table 10: Meson codes, part 2. For brevity, states with b quark are omitted from
this listing, but are defined in the program.

10.

11.

KF Name | Printed KF Name | Printed

10213 | by b_1+ 10211 | ag a 0+
10313 | K° K10 10311 | K | K*_00
10323 | Kj K 1+ 10321 | K§t | Kx_0+
10413 | Dy D_1+ 10411 | D§t | D*_0+
10423 | DY D_10 10421 | Dy | Dx.00
10433 | Df; D_1s+ | 10431 | DS | Dx_0s+
10113 | bY b_10 10111 | af a_00
10223 | LY h_10 10221 | £ £.00

10333 | hy h’ 10 | 10331 | ff £2_00
10443 | 19, ho1cO | 10441 | x§. | chi_0cO
20213 ay a1+ 215 ag a2+
20313 | K3° K*_10 315 | Ki® | Kx.20
20323 | Ki* K*_1+ 325 | K3t | Kx_2+
20413 | DIt D*_1+ 415 | DIt | Dx_2+
20423 | D° D*_10 425 | D3 | D*.20
20433 | Dif | Dx_1s+ 435 | Dif | Dx_2s+
20113 | af a 10 115 ad a-20
20223 D £.10 225 £ £.20
20333 | P £7.10 335 | fQ £7.20
20443 | % | chi_1co | 445 | X9 | chi_2c0
100443 | o psi’
100553 | YY" | Upsilon’

SUSY doubles the number of states of the Standard Model (at least). Fermions
have separate superpartners to the left- and right-handed components. In the third
generation these are assumed to mix to nontrivial mass eigenstates, while mixing
is not included in the first two. Note that all sparticle names begin with a tilde.
Default masses are arbitrary and branching ratios not set at all. This is taken care
of at initialization if IMSS(1) is positive.

Technicolor codes, Table 14.

A set of colourless and coloured technihadrons have been included, the latter specif-
ically for the case of Topcolor assisted Technicolor. Where unclear, indices 1 or 8
denote the colour multiplet. Then there are coloured technirhos and technipions that
can mix with the Coloron (or Vyg) associated with the breaking of SU(3),xSU(3)3
to ordinary SU(3)¢ (where the 2 and 3 indices refer to the first two and the third
generation, respectively).

The 1. belongs to an older iteration of Technicolor modelling than the rest. It was
originally given the 3000221 code, and thereby now comes to clash with the #’ SC of
the current main scenario. Since the 7. is one-of-a-kind, it was deemed better to
move it to make way for the 7’y This leads to a slight inconsistency with the PDG
codes.

Excited fermion codes, Table 15.

A first generation of excited fermions are included.

o4



Table 11: Baryon codes. For brevity, some states with b quarks or multiple ¢ ones

are omitted from this listing, but are defined in the program.

KF | Name | Printed KF | Name Printed
1114 | A~ Delta-
2112 n no 2114 | A° Delta0
2212 p p+ 2214 | AT Deltat+
2224 | AT Delta++
3112 | X~ Sigma- 3114 | ¥* Sigma*-
3122 | A° | Lambda0
3212 | XY Sigma0l 3214 | »*0 Sigmax*0
3222 | Xt Sigma+ || 3224 | X*F Sigma*+
3312 | =7 Xi- 3314 | =~ Xix-
3322 | =Y Xi0 3324 | =0 Xi*0
3334 | Q° Omega-
4112 | X2 Sigma cO || 4114 | X | Sigmax_cO
4122 | A | Lambda_c+
4212 | X | Sigmac+ | 4214 | Xt | Sigmak_c+
4222 | XH* | Sigma c++ || 4224 | 3T | Sigmax_c++
4132 | =Y Xi_cO
4312 | =0 Xi’_cO 4314 | =0 Xi*_cO
4232 | =F Xi_c+
4322 | ZF Xi’_c+ || 4324 | =:F Xi*_c+
4332 | Q% | Omega cO | 4334 | Q% | Omegax_cO
5112 | Xy Sigma_b- | 5114 | X{~ | Sigma*_b-
5122 | A} | Lambda b0
5212 | X9 Sigma b0 || 5214 | X | Sigma* b0
5222 | Xt Sigma b+ | 5224 | ¥;t | Sigmax b+
Table 12: QCD effective states.
KF Printed Meaning
110 reggeon reggeon IR
990 pomeron pomeron P
9900110 | rho diff0 | Diffractive 7°/p°/7 state
9900210 | pi_diffr+ Diffractive 7" state
9900220 | omega_di0 Diffractive w state
9900330 | phi_diffo0 Diffractive ¢ state
9900440 | J/psi-di0 | Diffractive J/¢ state
9902110 | n_diffr Diffractive n state
9902210 | p-diffr+ Diffractive p state
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Table 13: Supersymmetric codes.

KF Name | Printed KF Name Printed
1000001 dy, ~d_L 2000001 | dg ~d_R
1000002 | 1g ~u_L 2000002 | 1g ~u_R
1000003 S, ~s_L 2000003 SR ~s_R
1000004 Cr, ~c_L 2000004 | cgr ~c_R
1000005 | by ~b_1 || 2000005 | by ~b_2
1000006 |  t; ~t_1 2000006 |ty ~t_2
1000011 er, ~e_L- 2000011 €r ~e_R-
1000012 | 7y, ~nu_elL | 2000012 | Degr ~nu_eR
1000013 |  jig, ~mu_L- 2000013 | g ~mu_R-
1000014 | v,r ~numul | 2000014 | »,g ~nu_muR
1000015 5 ~tau_L- || 2000015 Ty ~tau_R-
1000016 | o, | ~nu_taul || 2000016 | 7, R ~nu_tauR
1000021 g ~g 1000025 X3 ~chi_30
1000022 | X9 | ~chi_ 10 | 1000035 | 9 ~chi_40
1000023 5 ~chi_20 || 1000037 | X5 ~chi_2+
1000024 | Y7 | ~chi_1+ | 1000039 | G | ~Gravitino

Table 14: Technicolor codes.

KF Name Printed KF Name Printed
3000111 | 7 pi_tcO 3100021 | Vg4 V8_tc
3000211 | gt pi_tc+ 3100111 7T8271 e | Pi_22_1_tc
3000221 WISC pi’_tcO || 3200111 7T8278 te | P1-22_8_tc
3000113 | pY. rho_tcO | 3100113 p(l]Ltc rho_11_tc
3000213 | pi rho_tc+ | 3200113 p(1]2,tc rho_12_tc
3000223 | w?. | omega tcO || 3300113 ngtc rho_21_tc
3000331 | e eta_tcO 3400113 pguc rho_22_tc

Table 15: Excited fermion codes.
KF Name | Printed KF Name | Printed
4000001 u* d* 4000011 e* ex-
4000002 d* u* 4000012 vr nu*_e0
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Table 16: Exotic particle codes.

KF Name Printed KF Name | Printed
5000039 | G* Graviton*
9900012 | Vge nu_Re 9900023 | 7Y% Z_RO
9900014 | wvg, nu_Rmu 9900024 | W W_R+
9900016 | vg. nu_Rtau 9900041 | Hf" | H.L++
9900042 | HA"T | HR++

12. Exotic particle codes, Table 16.

This section includes the excited graviton, as the first (but probably not last) man-
ifestation of the possibility of large extra dimensions. Although it is not yet in the
PDG standard, we assume that such states will go in a new series of numbers.
Included is also a set of particles associated with an extra SU(2) gauge group for
righthanded states, as required in order to obtain a left-right symmetric theory
at high energies. This includes righthanded (Majorana) neutrinos, righthanded Z%
and W% gauge bosons, and both left- and righthanded doubly charged Higgs bosons.
Such a scenario would also contain other Higgs states, but these do not bring any-
thing new relative to the ones already introduced, from an observational point of
view. Here the first two digits are 99 to denote the non-standard character.

A hint on large particle numbers: if you want to avoid mistyping the number of zeros,

it may pay off to define a statement like

PARAMETER (KSUSY1=1000000,KSUSY2=2000000,KTECHN=3000000,
&KEXCIT=4000000,KDIMEN=5000000)

at the beginning of your program and then refer to particles as KSUSY1+1 = d; and so
on. This then also agrees with the internal notation (where feasible).

5.2 The Event Record

Each new event generated is in its entirety stored in the common block PYJETS, which
thus forms the event record. Here each parton or particle that appears at some stage
of the fragmentation or decay chain will occupy one line in the matrices. The different
components of this line will tell which parton/particle it is, from where it originates, its
present status (fragmented/decayed or not), its momentum, energy and mass, and the
space—time position of its production vertex. Note that K(I,3)-K(I,5) and the P and V
vectors may take special meaning for some specific applications (e.g. sphericity or cluster
analysis), as described in those connections.

The event history information stored in K(I,3)-K(I,5) should not be taken too lit-
erally. In the particle decay chains, the meaning of a mother is well-defined, but the
fragmentation description is more complicated. The primary hadrons produced in string
fragmentation come from the string as a whole, rather than from an individual parton.
Even when the string is not included in the history (see MSTU(16)), the pointer from
hadron to parton is deceptive. For instance, in a qgq event, those hadrons are pointing
towards the q (@) parton that were produced by fragmentation from that end of the string,
according to the random procedure used in the fragmentation routine. No particles point
to the g. This assignment seldom agrees with the visual impression, and is not intended
to.

The common block PYJETS has expanded with time, and can now house 4000 entries.
This figure may seem ridiculously large, but actually the previous limit of 2000 was
often reached in studies of high-p, processes at the LHC (and SSC). This is because
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the event record contains not only the final particles, but also all intermediate partons
and hadrons, which subsequently showered, fragmented or decayed. Included are also a
wealth of photons coming from 7° decays; the simplest way of reducing the size of the
event record is actually to switch off 7° decays by MDCY(PYCOMP(111),1)=0. Also note
that some routines, such as PYCLUS and PYCELL, use memory after the event record proper
as a working area. Still, to change the size of the common block, upwards or downwards,
is easy: just do a global substitute in the common block and change the MSTU(4) value to
the new number. If more than 10000 lines are to be used, the packing of colour information
should also be changed, see MSTU(5).

COMMON/PYJETS/N,NPAD, K (4000,5) ,P(4000,5) ,V(4000,5)

Purpose:

NPAD :

K(I,1)

=11

=12 :

= 13 :
= 14 :

= 15 :

to contain the event record, i.e. the complete list of all partons and particles
(initial, intermediate and final) in the current event. (By parton we here
mean the subclass of particles that carry colour, for which extra colour flow
information is then required. Normally this means quarks and gluons, which
can fragment to hadrons, but also squarks and other exotic particles fall in
this category.)

number of lines in the K, P and V matrices occupied by the current event. N
is continuously updated as the definition of the original configuration and the
treatment of fragmentation and decay proceed. In the following, the individual
parton/particle number, running between 1 and N, is called I.

dummy to ensure an even number of integers before the double precision reals,
as required by some compilers.

status code KS, which gives the current status of the parton/particle stored in
the line. The ground rule is that codes 1-10 correspond to currently existing
partons/particles, while larger codes contain partons/particles which no longer

exist, or other kinds of event information.

empty line.

an undecayed particle or an unfragmented parton, the latter being either
a single parton or the last one of a parton system.

an unfragmented parton, which is followed by more partons in the same
colour-singlet parton system.

an unfragmented parton with special colour flow information stored in
K(I,4) and K(I,5), such that adjacent partons along the string need
not follow each other in the event record.

a particle which could have decayed, but did not within the allowed
volume around the original vertex.

a particle which is to be forced to decay in the next PYEXEC call, in the
vertex position given (this code is only set by user intervention).

a decayed particle or a fragmented parton, the latter being either a single
parton or the last one of a parton system, cf. =1.

a fragmented parton, which is followed by more partons in the same
colour-singlet parton system, cf. =2. Further, a B meson which decayed
as a B one, or vice versa, because of B-B mixing, is marked with this
code rather than =11.

a parton which has been removed when special colour flow information
has been used to rearrange a parton system, cf. =3.

a parton which has branched into further partons, with special colour-
flow information provided, cf. =3.

a particle which has been forced to decay (by user intervention), cf. =5.
documentation lines used to give a compressed story of the event at the
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K(I,2)
K(I,3)

K(I,4)

31

42

51

52

32 :
41

beginning of the event record.

lines with information on sphericity, thrust or cluster search.

tabular output, as generated by PYTABU.

a junction, with partons arranged in colour, except that two quark lines
may precede or follow a junction. For instance, a configuration like
4181 9282 (junction) gsqs corresponds to having three strings qig;, qago
and q3g3 meeting in the junction. The occurence of non-matching colours
easily reveal the gy as not being a continuation of the q;g; string. Here
each g above is shorthand for an arbitrary number of gluons, including
none. The most general topology allows two junctions in a system, i.e.
4181 q282 (junction) g (junction) g3qs g4q,. The final q/q would have sta-
tus code 1, the other partons 2. Thus code =41 occurs where =2 would
normally have been used, had the junction been an ordinary parton.

a junction, with special colour flow information stored in K(I,4) and
K(I,5), such that adjacent partons along the string need not follow each
other in the event record. Thus this code matches the =3 of ordinary
partons.

a junction of strings which have been fragmented, cf. =41. Thus this
code matches the =12 of ordinary partons.

a junction of strings which have been rearranged in colour, cf. =42. Thus
this code matches the =13 of ordinary partons.

these codes are never used by the program, and are therefore usually
not affected by operations on the record, such as PYROBO, PYLIST and
event-analysis routines (the exception is some PYEDIT calls, where lines
are moved but not deleted). Such codes may therefore be useful in some
connections.

particle KF code, as described in section 5.1.

line number of parent particle, where known, otherwise 0. Note that the
assignment of a particle to a given parton in a parton system is unphysical,
and what is given there is only related to the way the fragmentation was
generated.

normally the line number of the first daughter; it is 0 for an undecayed particle
or unfragmented parton.

For K(I,1) = 3, 13 or 14, instead, it contains special colour-flow information
(for internal use only) of the form

K(I,4) = 200000000*MCFR + 100000000*MCTO + 10000*ICFR + ICTO,
where ICFR and ICTO give the line numbers of the partons from which the
colour comes and to where it goes, respectively; MCFR and MCTO originally
are 0 and are set to 1 when the corresponding colour connection has been traced
in the PYPREP rearrangement procedure. (The packing may be changed with
MSTU(5).) The ‘from’ colour position may indicate a parton which branched
to produce the current parton, or a parton created together with the current
parton but with matched anticolour, while the ‘to’ normally indicates a parton
that the current parton branches into. Thus, for setting up an initial colour
configuration, it is normally only the ‘from’ part that is used, while the ‘to’
part is added by the program in a subsequent call to parton-shower evolution
(for final-state radiation; it is the other way around for initial-state radiation).
For K(I,1) = 42 or 52, see below.

Note: normally most users never have to worry about the exact rules for
colour-flow storage, since this is used mainly for internal purposes. However,
when it is necessary to define this flow, it is recommended to use the PYJOIN
routine, since it is likely that this would reduce the chances of making a mis-
take.
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K(I,5)

normally the line number of the last daughter; it is 0 for an undecayed particle
or unfragmented parton.

For K(I,1) = 3, 13 or 14, instead, it contains special colour-flow information
(for internal use only) of the form

K(I,5) = 200000000*MCFR + 100000000*MCTO + 10000*ICFR + ICTO,
where ICFR and ICTO give the line numbers of the partons from which the
anticolour comes and to where it goes, respectively; MCFR and MCTO orig-
inally are 0 and are set to 1 when the corresponding colour connection has
been traced in the PYPREP rearrangement procedure. For further discussion,
see K(I,4).

For K(I,1) = 42 or 52, see below.

K(I,4), K(I,5) : For junctions with K(I,1) = 42 or 52 the colour flow information

P(I,1)
P(I,2)
P(1,3)
P(I,4)
P(I,5)

scheme presented above has to be modified, since now three colour or anticolour

lines meet. Thus the form is

K(I,4) = 100000000*MC1 + 10000*ITP + ICI,

K(I,5) = 200000000*MC2 + 100000000*MC3 + 10000*IC2 + IC3.

The colour flow possibilities are

ITP = 1 : junction of three colours in the final state, with positions as stored
in IC1, IC2 and IC3. A typical example would be neutralino de-
cay to three quarks. Note that the positions need not be filled by
the line numbers of the final quark themselves, but more likely by
the immediate neutralino decay products that thereafter initiate
showers and branch further.

ITP = 2 : junction of three anticolours in the final state, with positions as
stored in IC1, IC2 and IC3.

ITP = 3 : junction of one incoming anticolour to two outgoing colours, with
the anticolour position stored in IC1 and the two colour ones in
IC2 and IC3. A typical example would be an antisquark decaying
to two quarks.

ITP = 4 : junction of one incoming colour to two outgoing anticolours, with

the colour position stored in IC1 and the two anticolour ones in 1C2
and 1C3.

ITP = 5 : junction of a colour octet into three colours. The incoming colour
is supposed to pass through unchanged, and so is bookkept as usual
for the particle itself. IC1 is the position of the incoming anticolour,
while IC2 and IC3 are the positions of the new colours associated
with the vanishing of this anticolour. A typical example would be
gluino decay to three quarks.

ITP = 6 : junction of a colour octet into three anticolours. The incoming an-
ticolour is supposed to pass through unchanged, and so is bookkept
as usual for the particle itself. IC1 is the position of the incoming
colour, while IC2 and IC3 are the positions of the new anticolours
associated with the vanishing of this colour.

Thus odd (even) ITP code corresponds to a +1 (—1) change in baryon number

across the junction.

The MC1, MC2 and MC3 mark which colour connections have been traced in

a PYPREP rearrangement procedure, as above.

. Pz, momentum in the z direction, in GeV/c.
: py, momentum in the y direction, in GeV/c.
: p,, momentum in the z direction, in GeV/c.

E energy, in GeV.
m, mass, in GeV/c?. In parton showers, with space-like virtualities, i.e. where
Q? = —m? > 0, one puts P(I,5)= —Q.
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V(I,1) : z position of production vertex, in mm.

V(I,2) : y position of production vertex, in mm.

V(I,3) : z position of production vertex, in mm.

V(I,4) : time of production, in mm/c (&~ 3.33 x 10712 g).

V(I,5) : proper lifetime of particle, in mm/c (=~ 3.33 x 10712 s). If the particle is not
expected to decay, V(I,5)=0. A line with K(I,1)=4, i.e. a particle that could
have decayed, but did not within the allowed region, has the proper non-zero
V(I,5).

In the absence of electric or magnetic fields, or other disturbances, the decay
vertex VP of an unstable particle may be calculated as
VP(j) = V(I,j) + V(I,5)*P(I,j)/P(I,5), j = 1-4.

5.3 How The Event Record Works

The event record is the main repository for information about an event. In the generation
chain, it is used as a ‘scoreboard’ for what has already been done and what remains to
do. This information can be studied by you, to access information not only about the
final state, but also about what came before.

5.3.1 A simple example

The first example of section 3.5 may help to clarify what is going on. When PY2ENT is
called to generate a (q pair, the quarks are stored in lines 1 and 2 of the event record,
respectively. Colour information is set to show that they belong together as a colour
singlet. The counter N is also updated to the value of 2. At no stage is a previously
generated event removed. Lines 1 and 2 are overwritten, but lines 3 onwards still contain
whatever may have been there before. This does not matter, since N indicates where the
‘real’ record ends.

As PYEXEC is called, explicitly by you or indirectly by PY2ENT, the first entry is con-
sidered and found to be the first parton of a system. Therefore the second entry is also
found, and these two together form a colour singlet parton system, which may be allowed
to fragment. The ‘string’ that fragments is put in line 3 and the fragmentation products
in lines 4 through 10 (in this particular case). At the same time, the q and @ in the first
two lines are marked as having fragmented, and the same for the string. At this stage, N
is 10. Internally in PYEXEC there is another counter with the value 2, which indicates how
far down in the record the event has been studied.

This second counter is gradually increased by one. If the entry in the corresponding
line can fragment or decay, then fragmentation or decay is performed. The fragmenta-
tion/decay products are added at the end of the event record, and N is updated accordingly.
The entry is then also marked as having been treated. For instance, when line 3 is con-
sidered, the ‘string’ entry of this line is seen to have been fragmented, and no action is
taken. Line 4, a pT, is allowed to decay to 77 7%; the decay products are stored in lines 11
and 12, and line 4 is marked as having decayed. Next, entry 5 is allowed to decay. The
entry in line 6, 7, is a stable particle (by default) and is therefore passed by without any
action being taken.

In the beginning of the process, entries are usually unstable, and N grows faster than
the second counter of treated entries. Later on, an increasing fraction of the entries are
stable end products, and the roles are now reversed, with the second counter growing
faster. When the two coincide, the end of the record has been reached, and the process
can be stopped. All unstable objects have now been allowed to fragment or decay. They
are still present in the record, so as to simplify the tracing of the history.

Notice that PYEXEC could well be called a second time. The second counter would then
start all over from the beginning, but slide through until the end without causing any
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action, since all objects that can be treated already have been. Unless some of the relevant
switches were changed meanwhile, that is. For instance, if 7° decays were switched off
the first time around but on the second, all the 7%’s found in the record would be allowed
to decay in the second call. A particle once decayed is not ‘undecayed’, however, so if the
7% is put back stable and PYEXEC is called a third time, nothing will happen.

5.3.2 Complete PYTHIA events

In a full-blown event generated with PYTHIA, the usage of PYJETS is more complicated,
although the general principles survive. PYJETS is used extensively by many of the gener-
ation routines; indeed it provides the bridge between many of them. The PYTHIA event
listing begins (optionally) with a few lines of event summary, specific to the hard process
simulated and thus not described in the overview above. These specific parts are covered
in the following.

In most instances, only the particles actually produced are of interest.  For
MSTP(125)=0, the event record starts off with the parton configuration existing after
hard interaction, initial- and final-state radiation, multiple interactions and beam rem-
nants have been considered. The partons are arranged in colour singlet clusters, ordered
as required for string fragmentation. Also photons and leptons produced as part of the
hard interaction (e.g. from qq — g7y or ui — Z° — eTe™) appear in this part of the event
record. These original entries appear with pointer K(I,3)=0, whereas the products of the
subsequent fragmentation and decay have K(I,3) numbers pointing back to the line of
the parent.

The standard documentation, obtained with MSTP(125)=1, includes a few lines at the
beginning of the event record, which contain a brief summary of the process that has taken
place. The number of lines used depends on the nature of the hard process and is stored
in MSTI(4) for the current event. These lines all have K(I,1)=21. For all processes, lines
1 and 2 give the two incoming particles. When listed with PYLIST, these two lines will be
separated from subsequent ones by a sequence of ‘======" gigns, to improve readability.
For diffractive and elastic events, the two outgoing states in lines 3 and 4 complete the
list. Otherwise, lines 3 and 4 contain the two partons that initiate the two initial-state
parton showers, and 5 and 6 the end products of these showers, i.e. the partons that
enter the hard interaction. With initial-state radiation switched off, lines 3 and 5 and
lines 4 and 6 are identical. For a simple 2 — 2 hard scattering, lines 7 and 8 give the
two outgoing partons/particles from the hard interaction, before any final-state radiation.
For 2 — 2 processes proceeding via an intermediate resonance such as v*/Z° W= or h®,
the resonance is found in line 7 and the two outgoing partons/particles in 8 and 9. In
some cases one of these may be a resonance in its own right, or both of them, so that
further pairs of lines are added for subsequent decays. If the decay of a given resonance
has been switched off, then no decay products are listed either in this initial summary
or in the subsequent ordinary listing. Whenever partons are listed, they are assumed to
be on the mass shell for simplicity. The fact that effective masses may be generated by
initial- and final-state radiation is taken into account in the actual parton configuration
that is allowed to fragment, however. The listing of the event documentation closes with
another line made up of ‘======" signs.

A few examples may help clarify the picture. For a single diffractive event pp — paimP,
the event record will start with

I K(I,1) K(I,2) K(I,3) comment

1 21 2212 0 incoming p
2 21 -2212 0 incoming p
not part of record; appears in listings
3 21 9902210 1 outgoing paifir
4 21 -2212 2 outgoing p
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again not part of record
The typical QCD 2 — 2 process would be
I K(I,1) K(I,2) K(I,3) comment

1 21 2212 0 incoming p

2 21 -2212 0 incoming p

3 21 2 1 u picked from incoming p

4 21 -1 2 d picked from incoming p

5 21 21 3 u evolved to g at hard scattering
6 21 -1 4 still d at hard scattering

7 21 21 0 outgoing g from hard scattering

8 21 -1 0 outgoing d from hard scattering

Note that, where well defined, the K(I,3) code does contain information as to which
side the different partons come from, e.g. above the gluon in line 5 points back to the u
in line 3, which points back to the proton in line 1. In the example above, it would have
been possible to associate the scattered g in line 7 with the incoming one in line 5, but
this is not possible in the general case, consider e.g. gg — gg.

A special case is provided by WTW~ or Z°Z° fusion to an h®. Then the virtual W’s or
Z’s are shown in lines 7 and 8, the h® in line 9, and the two recoiling quarks (that emitted
the bosons) in 10 and 11, followed by the Higgs decay products. Since the W’s and Z’s are
space-like, what is actually listed as the mass for them is —v/—m?2. Thus W W~ fusion
to an h® in process 8 (not process 124, which is lengthier) might look like

I K(I,1) K(I,2) K(I,3) comment

1 21 2212 0 first incoming p
2 21 2212 0 second incoming p
3 21 2 1 u picked from first p
4 21 21 2 g picked from second p
5 21 2 3 still u after initial-state radiation
6 21 -4 4 g evolved to €
7 21 24 5 space-like W emitted by u quark
8 21 -24 6 space-like W™ emitted by ¢ quark
9 21 25 0 Higgs produced by WHW~ fusion
10 21 1 5 u turned into d by emission of W+
11 21 -3 6 € turned into S by emission of W™
12 21 23 9 first Z° coming from decay of h°
13 21 23 9 second Z° coming from decay of h'
14 21 12 12 1, from first Z° decay
15 21 -12 12 7, from first Z° decay
16 21 5 13 b quark from second Z° decay
17 21 -5 13 b antiquark from second Z° decay

Another special case is when a spectrum of virtual photons are generated inside a
lepton beam, i.e. when PYINIT is called with one or two ’gamma/lepton’ arguments.
(Where lepton could be either of e-, e+, mu-, mu+, tau- or tau+.) Then the documentation
section is expanded to reflect the new layer of administration. Positions 1 and 2 contain
the original beam particles, e.g. e and p (or e™ and e7). In position 3 (and 4 for eTe™) is
(are) the scattered outgoing lepton(s). Thereafter comes the normal documentation, but
starting from the photon rather than a lepton. For ep, this means 4 and 5 are the v* and
p, 6 and 7 the shower initiators, 8 and 9 the incoming partons to the hard interaction,
and 10 and 11 the outgoing ones. Thus the documentation is 3 lines longer (4 for eTe™)
than normally.
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The documentation lines are often helpful to understand in broad outline what hap-
pened in a given event. However, they only provide the main points of the process, with
many intermediate layers of parton showers omitted. The documentation can therefore
appear internally inconsistent, if the user does not remember what could have happened
in between. For instance, the listing above would show the Higgs with the momentum
it has before radiation off the two recoiling u and © quarks is considered. When these
showers are included, the Higgs momentum may shift by the changed recoil. However,
this update is not visible in the initial summary, which thus still shows the Higgs before
the showering. When the Higgs decays, on the other hand, it is the real Higgs momentum
further down in the event record that is used, and that thus sets the momenta of the de-
cay products that are also copied up to the summary. Such effects will persist in further
decays; e.g. the b and b shown at the end of the example above are before showers, and
may deviate from the final parton momenta quite significantly. Similar shifts will also
occur e.g. in a t — bWT — bqq’ decays, when the gluon radiation off the b gives a recoil
to the W that is not visible in the W itself but well in its decay products. In summary,
the documentation section should never be mistaken for the physically observable state
in the main section of the event record, and never be used as part of any realistic event
analysis.

(An alternative approach would be in the spirit of the Les Houches ‘parton-level’ event
record, section 9.9, where the whole chain of decays normally is carried out before starting
the parton showers. With this approach, one could have an internally consistent summary,
but then in diverging disagreement with the "real” particles after each layer of shower
evolution.)

After these lines with the initial information, the event record looks the same as
for MSTP(125)=0, i.e. first comes the parton configuration to be fragmented and, after
another separator line ‘======"in the output (but not the event record), the products
of subsequent fragmentation and decay chains. This ordinary listing begins in position
MSTI(4)+1. The K(I,3) pointers for the partons, as well as leptons and photons produced
in the hard interaction, are now pointing towards the documentation lines above, however.
In particular, beam remnants point to 1 or 2, depending on which side they belong to, and
partons emitted in the initial-state parton showers point to 3 or 4. In the second example
above, the partons produced by final-state radiation will be pointing back to 7 and 8; as
usual, it should be remembered that a specific assignment to 7 or 8 need not be unique.
For the third example, final-state radiation partons will come both from partons 10 and
11 and from partons 16 and 17, and additionally there will be a neutrino—antineutrino
pair pointing to 14 and 15.

A hadronic event may contain several (semi)hard interactions, in the multiple inter-
actions scenario. The hardest interaction of an event is shown in the initial section of the
event record, while further ones are not. Therefore these extra partons, documented in
the main section of the event, do not have a documentation copy to point back to, and
so are assigned K(I,3)=0.

There exists a third documentation option, MSTP(125)=2. Here the history of initial-
and final-state parton branchings may be traced, including all details on colour flow. This
information has not been optimized for user-friendliness, and cannot be recommended for
general usage. With this option, the initial documentation lines are the same. They are
followed by blank lines, K(I,1)=0, up to line 100 (can be changed in MSTP(126)). From
line 101 onwards each parton with K(I,1)= 3, 13 or 14 appears with special colour-flow
information in the K(I,4) and K(I,5) positions. For an ordinary 2 — 2 scattering,
the two incoming partons at the hard scattering are stored in lines 101 and 102, and
the two outgoing in 103 and 104. The colour flow between these partons has to be
chosen according to the proper relative probabilities in cases when many alternatives are
possible, see section 8.2.1. If there is initial-state radiation, the two partons in lines 101
and 102 are copied down to lines 105 and 106, from which the initial-state showers are
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reconstructed backwards step by step. The branching history may be read by noting that,
for a branching a — be, the K(I,3) codes of b and ¢ point towards the line number of a.
Since the showers are reconstructed backwards, this actually means that parton b would
appear in the listing before parton a and ¢, and hence have a pointer to a position below
itself in the list. Associated time-like partons ¢ may initiate time-like showers, as may
the partons of the hard scattering. Again a showering parton or pair of partons will be
copied down towards the end of the list and allowed to undergo successive branchings
¢ — de, with d and e pointing towards c¢. The mass of time-like partons is properly
stored in P(I,5); for space-like partons —v/—m? is stored instead. After this section,
containing all the branchings, comes the final parton configuration, properly arranged in
colour, followed by all subsequent fragmentation and decay products, as usual.

5.4 The HEPEVT Standard

A set of common blocks was developed and agreed on within the framework of the 1989
LEP physics study, see [Sj689]. This standard defines an event record structure which
should make the interfacing of different event generators much simpler.

It would be a major work to rewrite PYTHIA to agree with this standard event record
structure. More importantly, the standard only covers quantities which can be defined
unambiguously, i.e. which are independent of the particular program used. There are
thus no provisions for the need for colour-flow information in models based on string frag-
mentation, etc., so the standard common blocks would anyway have to be supplemented
with additional event information. For the moment, the adopted approach is therefore to
retain the PYJETS event record, but supply a routine PYHEPC which can convert to or from
the standard event record. Owing to a somewhat different content in the two records,
some ambiguities do exist in the translation procedure. PYHEPC has therefore to be used
with some judgement.

In this section, the standard event structure is first presented, i.e. the most important
points in [Sj689] are recapitulated. Thereafter the conversion routine is described, with
particular attention to ambiguities and limitations.

The standard event record is stored in two common blocks. The second of these is
specifically intended for spin information. Since PYTHIA never (explicitly) makes use of
spin information, this latter common block is not addressed here. A third common block
for colour flow information has been discussed, but never formalized. Note that a CALL
PYLIST(5) can be used to obtain a simple listing of the more interesting information in
the event record.

In order to make the components of the standard more distinguishable in your pro-
grams, the three characters HEP (for High Energy Physics) have been chosen to be a part
of all names.

Originally it was not specified whether real variables should be in single or double
precision. At the time, this meant that single precision became the default choice, but
since then the trend has been towards increasing precision. In connection with the 1995
LEP 2 workshop, it was therefore agreed to adopt DOUBLE PRECISION real variables as
part of the standard, and also to extend the size from 2000 to 4000 entries [Kno96]. If, for
some reason, one would want to revert to single precision, this would only require trivial
changes to the code of the PYHEPC conversion routine described below.

PARAMETER (NMXHEP=4000)
COMMON/HEPEVT/NEVHEP , NHEP , ISTHEP (NMXHEP) , IDHEP (NMXHEP) ,

&JMOHEP (2 ,NMXHEP) , JDAHEP (2, NMXHEP) , PHEP (5, NMXHEP) , VHEP (4 , NMXHEP)
DOUBLE PRECISION PHEP, VHEP
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Purpose: to contain an event record in a Monte Carlo-independent format.

NMXHEP: maximum numbers of entries (particles) that can be stored in the common
block. The default value of 4000 can be changed via the parameter construc-
tion. In the translation, it is checked that this value is not exceeded.

NEVHEP: is normally the event number, but may have special meanings, according to
the description below:

>0 : event number, sequentially increased by 1 for each call to the main event
generation routine, starting with 1 for the first event generated.
=0 : for a program which does not keep track of event numbers, as some of
the PYTHIA routines.
= -1 : special initialization record; not used by PYTHIA.
= -2 : special final record; not used by PYTHIA.
NHEP: the actual number of entries stored in the current event. These are found in the

first NHEP positions of the respective arrays below. Index THEP, 1<THEP<NHEP,
is used below to denote a given entry.
ISTHEP (IHEP) : status code for entry IHEP, with the following meanings:

=0 : null entry.

=1 : an existing entry, which has not decayed or fragmented. This is the main
class of entries, which represents the ‘final state’ given by the generator.

=2 : an entry which has decayed or fragmented and is therefore not appearing
in the final state, but is retained for event history information.

=3: a documentation line, defined separately from the event history. This

could include the two incoming reacting particles, etc.

4 - 10 : undefined, but reserved for future standards.

= 11 - 200 : at the disposal of each model builder for constructs specific to his

program, but equivalent to a null line in the context of any other program.

201 - : at the disposal of users, in particular for event tracking in the detector.

IDHEP (IHEP) : particle identity, according to the PDG standard. The four additional
codes 91-94 have been introduced to make the event history more legible, see
section 5.1 and the MSTU(16) description of how daughters can point back to
them.

JMOHEP (1,THEP) : pointer to the position where the mother is stored. The value is 0 for
initial entries.

JMOHEP (2, THEP) : pointer to position of second mother. Normally only one mother
exists, in which case the value 0 is to be used. In PYTHIA, entries with
codes 91-94 are the only ones to have two mothers. The flavour con-
tents of these objects, as well as details of momentum sharing, have to be
found by looking at the mother partons, i.e. the two partons in positions
JMOHEP (1, THEP) and JMOHEP(2,IHEP) for a cluster or a shower system, and
the range JMOHEP(1,IHEP)-JMOHEP(2,IHEP) for a string or an independent
fragmentation parton system.

JDAHEP (1,IHEP) : pointer to the position of the first daughter. If an entry has not
decayed, this is 0.

JDAHEP (2, THEP) : pointer to the position of the last daughter. If an entry has not
decayed, this is 0. It is assumed that daughters are stored sequentially, so
that the whole range JDAHEP (1, IHEP)-JDAHEP(2,THEP) contains daughters.
This variable should be set also when only one daughter is present, as in
K" — K% decays, so that looping from the first daughter to the last one works
transparently. Normally daughters are stored after mothers, but in backwards
evolution of initial-state radiation the opposite may appear, i.e. that mothers
are found below the daughters they branch into. Also, the two daughters then
need not appear one after the other, but may be separated in the event record.

PHEP(1,IHEP) : momentum in the z direction, in GeV/c.
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PHEP(2,IHEP) : momentum in the y direction, in GeV/ec.

PHEP(3,IHEP) : momentum in the z direction, in GeV/c.

PHEP (4,IHEP) : energy, in GeV.

PHEP(5,IHEP) : mass, in GeV/c?. For space-like partons, it is allowed to use a negative
mass, according to PHEP (5, IHEP) = —/—m?.

VHEP (1,IHEP) : production vertex x position, in mm.

VHEP (2, IHEP) : production vertex y position, in mm.

VHEP (3,IHEP) : production vertex z position, in mm.

VHEP (4,THEP) : production time, in mm/c (~ 3.33 x 107'2 s).

This completes the brief description of the standard. In PyTHIA, the routine PYHEPC
is provided as an interface.

CALL PYHEPC (MCONV)

Purpose: to convert between the PYJETS event record and the HEPEVT event record.
MCONV : direction of conversion.

=1: translates the current PYJETS record into the HEPEVT one, while leaving
the original PYJETS one unaffected.
=2 : translates the current HEPEVT record into the PYJETS one, while leaving

the original HEPEVT one unaffected.

The conversion of momenta is trivial: it is just a matter of exchanging the order of the
indices. The vertex information is but little more complicated; the extra fifth component
present in PYJETS can be easily reconstructed from other information for particles which
have decayed. (Some of the advanced features made possible by this component, such as
the possibility to consider decays within expanding spatial volumes in subsequent PYEXEC
calls, cannot be used if the record is translated back and forth, however.) Also, the
particle codes K(I,2) and IDHEP(I) are identical, since they are both based on the PDG
codes.

The remaining, non-trivial areas deal with the status codes and the event history. In
moving from PYJETS to HEPEVT, information on colour flow is lost. On the other hand, the
position of a second mother, if any, has to be found; this only affects lines with K(I,2)=
91-94. Also, for lines with K(I,1)= 13 or 14, the daughter pointers have to be found. By
and large, however, the translation from PYJETS to HEPEVT should cause little problem,
and there should never be any need for user intervention. (We assume that PYTHIA is run
with the default MSTU(16)=1 mother pointer assignments, otherwise some discrepancies
with respect to the proposed standard event history description will be present.)

In moving from HEPEVT to PYJETS, information on a second mother is lost. Any
codes IDHEP(I) not equal to 1, 2 or 3 are translated into K(I,1)=0, and so all entries
with K(I,1)> 30 are effectively lost in a translation back and forth. All entries with
IDHEP (I)=2 are translated into K(I,1)=11, and so entries of type K(I,1) = 12, 13, 14
or 15 are never found. There is thus no colour-flow information available for partons
which have fragmented. For partons with IDHEP(I)=1, i.e. which have not fragmented,
an attempt is made to subdivide the partonic system into colour singlets, as required
for subsequent string fragmentation. To this end, it is assumed that partons are stored
sequentially along strings. Normally, a string would then start at a q (q) or q (qq) entry,
cover a number of intermediate gluons, and end at a @ (q) or qq (qq) entry. Particles
could be interspersed in this list with no adverse effects, i.e. a u — g — v — @ sequence
would be interpreted as a u — g — 1 string plus an additional photon. A closed gluon loop
would be assumed to be made up of a sequential listing of the gluons, with the string
continuing from the last gluon up back to the first one. Contrary to the previous, open
string case, the appearance of any particle but a gluon would therefore signal the end of
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the gluon loop. For example, a g — g — g — g sequence would be interpreted as one single
four-gluon loop, while a g — g — v — g — g sequence would be seen as composed of two
2-gluon systems.

If these interpretations, which are not unique, are not to your liking, it is up to you
to correct them, e.g. by using PYJOIN to tell exactly which partons should be joined, in
which sequence, to give a string. Calls to PYJOIN (or the equivalent) are also necessary if
PYSHOW is to be used to have some partons develop a shower.

For practical applications, one should note that eTe™ events, which have been allowed
to shower but not to fragment, do have partons arranged in the order assumed above,
so that a translation to HEPEVT and back does not destroy the possibility to perform
fragmentation by a simple PYEXEC call. Also the hard interactions in hadronic events
fulfil this condition, while problems may appear in the multiple interaction scenario,
where several closed gg loops may appear directly following one another, and thus would
be interpreted as a single multigluon loop after translation back and forth.
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6 The Old Electron—Positron Annihilation Routines

From the JETSET package, PYTHIA inherits routines for the dedicated simulation of two
hard processes in ee™ annihilation. The process of main interest is ete™ — v*/Z° — qq.
The description provided by the PYEEVT routine has been a main staple from PETRA days
up to the LEP1 era. Nowadays it is superseded by process 1 of the main PYTHIA event
generation machinery, see section 8.4.2. This latter process offers a better description of
flavour selection, resonance shape and initial-state radiation. It can also, optionally, be
used with the second-order matrix element machinery documented in this section. For
backwards compatibility, however, the old routines have still been retained here. There
are also a few features found in the routines in this section, and not in the other ones,
such as polarized incoming beams.

For the process eTe™ — ~*/Z° — qq, higher-order QCD corrections can be obtained
either with parton showers or with second-order matrix elements. The details of the
parton-shower evolution are given in section 10, while this section contains the matrix-
element description, including a summary of the older algorithm for initial-state photon
radiation used here.

The other standalone hard process in this section is T decay to ggg or ygg, which is
briefly commented on.

The main sources of information for this chapter are refs. [Sj683, Sj686, Sj689].

6.1 Annihilation Events in the Continuum

The description of ete™ annihilation into hadronic events involves a number of compo-
nents: the s dependence of the total cross section and flavour composition, multiparton
matrix elements, angular orientation of events, initial-state photon bremsstrahlung and
effects of initial-state electron polarization. Many of the published formulae have been
derived for the case of massless outgoing quarks. For each of the components described in
the following, we will begin by discussing the massless case, and then comment on what
is done to accommodate massive quarks.

6.1.1 Electroweak cross sections

In the standard theory, fermions have the following couplings (illustrated here for the first
generation):

e, =0, vy, = 1, a, =1,

ee = —1, Ve = —1 + 4sin®Oyy, ae = —1,

ew =2/3,  wvy=1-8sin’0y /3, a,=1,

ea=—1/3, wvg=—1+4sin*0y /3, aq=—1,
with e the electric charge, and v and a the vector and axial couplings to the Z°. The
relative energy dependence of the weak neutral current to the electromagnetic one is given

by
1 S

16 sin®0y; cos20yy s —m3 + imzly

X(s) (19)
where s = E2_. In this section the electroweak mixing parameter sinfy and the Z° mass
my and width 'y are considered as constants to be given by you (while the full PyTHIA
event generation machinery itself calculates an s-dependent width).

Although the incoming e™ and e~ beams are normally unpolarized, we have included
the possibility of polarized beams, following the formalism of [O1s80]. Thus the incoming
et and e~ are characterized by polarizations P* in the rest frame of the particles:

P* = pfst 4 prpt (20)
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where 0 < P% <land —-1< Pf < 1, with the constraint

(P5)? = (Pr)* +(PL)* < 1. (21)
Here §* are unit vectors perpendicular to the beam directions p*. To be specific, we
choose a right-handed coordinate frame with p* = (0,0, F1), and standard transverse
polarization directions (out of the machine plane for storage rings) §* = (0,41,0), the
latter corresponding to azimuthal angles p* = £7/2. As free parameters in the program
we choose P, P, Pr = \/P{ Py and Ap = (o +¢p7)/2.
In the massless QED case, the probability to produce a flavour f is proportional to
e?, i.e up-type quarks are four times as likely as down-type ones. In lowest-order mass-
less QFD (Quantum Flavour Dynamics; part of the Standard Model) the corresponding
relative probabilities are given by [Ols80]

he(s) = e2(1—PFP)el + 2e {ve(l — PP) —ao(P — Pﬂr)} Rx(s) efvr +
+ {0 +a)(1 = PIP)) = 2veae(P = B} IXG)P {of +af} . (22)

where Rx(s) denotes the real part of x(s). The h¢(s) expression depends both on the s
value and on the longitudinal polarization of the e* beams in a non-trivial way.
The cross section for the process ete™ — +*/Z% — ff may now be written as

2
_Awag,

o1(s) = —3 Fils) (23)

where Ry gives the ratio to the lowest-order QED cross section for the process ete™ —
e,

Rf(S) = NC RQCD hf(S) . (24)
The factor of No = 3 counts the number of colour states available for the qq pair. The

Rqep factor takes into account QCD loop corrections to the cross section. For ny effective
flavours (normally ny = 5)

Qg Qg 2
RQ@)sl.%;;+(L9&a—011@wq<;;) . (25)

in the MS renormalization scheme [Din79]. Note that Rqcp does not affect the relative
quark-flavour composition, and so is of peripheral interest here. (For leptons the N¢
and Rqcp factors would be absent, i.e. No Roep = 1, but leptonic final states are not
generated by this routine.)

Neglecting higher-order QCD and QFD effects, the corrections for massive quarks are

given in terms of the velocity 3 of a fermion with mass mg, Gr = /1 — 4mZ/s, as follows.

The vector quark current terms in h¢ (proportional to €?, efvr, or v#) are multiplied by a
threshold factor 3;(3 — 37)/2, while the axial vector quark current term (proportional to
a?) is multiplied by 8f. While inclusion of quark masses in the QFD formulae decreases
the total cross section, first-order QCD corrections tend in the opposite direction [Jer81].
Naively, one would expect one factor of 3¢ to get cancelled. So far, the available options
are either to include threshold factors in full or not at all.

Given that all five quarks are light at the scale of the Z°, the issue of quark masses
is not really of interest at LEP. Here, however, purely weak corrections are important, in
particular since they change the b quark partial width differently from that of the other
ones [Kiih89]. No such effects are included in the program.
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6.1.2 First-order QCD matrix elements

The Born process ete™ — ¢q is modified in first-order QCD by the probability for the ¢ or
q to radiate a gluon, i.e. by the process ete™ — qqg. The matrix element is conveniently
given in terms of scaled energy variables in the c.m. frame of the event, 21 = 2E,/FEey,
Ty = 2F5/Eer, and x5 = 2E,/ Eqpy, i.e. 21 + 29 + 3 = 2. For massless quarks the matrix
element reads [ElI76]

1 do Qo 2+ 22
— =0 12 26
(o)) d.ﬁlfl d.TQ 2 £ (1 — .Tl)(l — .I‘Q) ’ ( )

where oy is the lowest-order cross section, Cr = 4/3 is the appropriate colour factor, and
the kinematically allowed region is 0 < x; < 1,7 = 1,2, 3. By kinematics, the z; variable
for parton k is related to the invariant mass m;; of the other two partons i and j by
yl] ml] cm k-

The strong coupling constant «g is in first order given by

127
(33 = 2n¢) In(Q?/A?)

as(Q*) = (27)

Conventionally Q* = s = E2_; we will return to this issue below. The number of flavours
nys is 5 for LEP applications, and so the A value determined is A5 (while e.g. most Deeply
Inelastic Scattering studies refer to A4, the energies for these experiments being below
the bottom threshold). The oy values are matched at flavour thresholds, i.e. as ny is
changed the A value is also changed. It is therefore the derivative of ay that changes at
a threshold, not «y itself.

In order to separate 2-jets from 3-jets, it is useful to introduce jet-resolution param-
eters. This can be done in several different ways. Most famous are the y and (¢, 0)
procedures. We will only refer to the y cut, which is the one used in the program. Here

a 3-parton configuration is called a 2-jet event if

m2.
(v = min [ —4 9
min(y;;) q?(5%><y- (28)

The cross section in eq. (26) diverges for z; — 1 or x5 — 1 but, when first-order
propagator and vertex corrections are included, a corresponding singularity with opposite
sign appears in the q cross section, so that the total cross section is finite. In analytical
calculations, the average value of any well-behaved quantity Q can therefore be calculated
as

(Q) = L lim (Q(Qparton) Taparton (V) +/ Q(x1, x2) sparion dzy dl’z) , (29)

Otot, ¥—0 Yig >y dx; dzy

where any explicit y dependence disappears in the limit y — 0.

In a Monte Carlo program, it is not possible to work with a negative total 2-jet rate,
and thus it is necessary to introduce a fixed non-vanishing y cut in the 3-jet phase space.
Experimentally, there is evidence for the need of a low y cut, i.e. a large 3-jet rate. For
LEP applications, the recommended value is y = 0.01, which is about as far down as one
can go and still retain a positive 2-jet rate. With oy = 0.12, in full second-order QCD
(see below), the 2 : 3 : 4 jet composition is then approximately 11% : 77% : 12%.

Note, however, that initial-state QED radiation may occasionally lower the c.m. energy
significantly, i.e. increase as, and thereby bring the 3-jet fraction above unity if y is kept
fixed at 0.01 also in those events. Therefore, at PETRA/PEP energies, y values slightly
above 0.01 are needed. In addition to the y cut, the program contains a cut on the
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invariant mass m,; between any two partons, which is typically required to be larger than
2 GeV. This cut corresponds to the actual merging of two nearby parton jets, i.e. where a
treatment with two separate partons rather than one would be superfluous in view of the
smearing arising from the subsequent fragmentation. Since the cut-off mass scale /yFEcn
normally is much larger, this additional cut only enters for events at low energies.

For massive quarks, the amount of QCD radiation is slightly reduced [Iof78]:

1 d . 24 g2 Am? 1 1
o a_CF{( 43 ( N )

o0 1—21)(1 — x9) s \1l—2; 1—u

oo dzy dzs 2

2m? 1 1 4m; 1 I
q q
+ + (3
s <(1—ZL‘1)2 (1—x2)2> s? (1—:101 1—x2) } (30)

Properly, the above expression is only valid for the vector part of the cross section, with
a slightly different expression for the axial part, but here the one above is used for it all.
In addition, the phase space for emission is reduced by the requirement

(1 —2)(1 —22)(1 — z3) > ﬁ .

(31)
For b quarks at LEP energies, these corrections are fairly small.

6.1.3 Four-jet matrix elements

Two new event types are added in second-order QCD, ete™ — qqgg and ete™ — qqq'q.
The 4-jet cross section has been calculated by several groups [Ali80a, Gae80, ElI81, Dan82],
which agree on the result. The formulae are too lengthy to be quoted here. In one of the
calculations [Ali80al, quark masses were explicitly included, but here only the massless
expressions are included, as taken from [ElI81]. Here the angular orientation of the event
has been integrated out, so that five independent internal kinematical variables remain.
These may be related to the six y;; and the four y;;, variables, y;; = m?;/s = (p; + p;)?/s
and y;jr, = my;,/s = (pi +p;j + pe)?/s, in terms of which the matrix elements are given.

The original calculations were for the pure v-exchange case; it has been pointed out
[Kni89] that an additional contribution to the e"e™ — qqq'q cross section arises from the
axial part of the Z°. This term is not included in the program, but fortunately it is finite
and small.

Whereas the way the string, i.e. the fragmenting colour flux tube, is stretched is
uniquely given in qqg event, for qqgg events there are two possibilities: q —g; —gs — q
or q—gs — g1 —q. A knowledge of quark and gluon colours, obtained by perturbation
theory, will uniquely specify the stretching of the string, as long as the two gluons do not
have the same colour. The probability for the latter is down in magnitude by a factor
1/NZ = 1/9. One may either choose to neglect these terms entirely, or to keep them for the
choice of kinematical setup, but then drop them at the choice of string drawing [Gus82].
We have adopted the latter procedure. Comparing the two possibilities, differences are
typically 10-20% for a given kinematical configuration, and less for the total 4-jet cross
section, so from a practical point of view this is not a major problem. L

In higher orders, results depend on the renormalization scheme; we will use MS
throughout. In addition to this choice, several possible forms can be chosen for ag, all
of which are equivalent to that order but differ in higher orders. We have picked the
recommended standard [PDG88|

127 {1 . 153 — 19n; ln(ln(QQ/Aiﬂ—S))}
(33 — 2ny) In(Q?/A2) (33 —2np)®  In(Q*/A2)

as(Q) = (32)
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6.1.4 Second-order three-jet matrix elements

As for first order, a full second-order calculation consists both of real parton emission
terms and of vertex and propagator corrections. These modify the 3-jet and 2-jet cross
sections. Although there was some initial confusion, everybody soon agreed on the size
of the loop corrections [ElI81, Ver81, Fab82]. In analytic calculations, the procedure
of eq. (29), suitably expanded, can therefore be used unambiguously for a well-behaved
variable.

For Monte Carlo event simulation, it is again necessary to impose some finite jet-
resolution criterion. This means that four-parton events which fail the cuts should be
reassigned either to the 3-jet or to the 2-jet event class. It is this area that caused quite a
lot of confusion in the past [Kun81, Got82, Ali82, Zhu83, Gut84, Gut87, Kra88], and where
full agreement does not exist. Most likely, agreement will never be reached, since there
are indeed ambiguous points in the procedure, related to uncertainties on the theoretical
side, as follows.

For the y-cut case, any two partons with an invariant mass m?, < yEZ2_ should be
recombined into one. If the four-momenta are simply added, the sum will correspond
to a parton with a positive mass, namely the original m,;. The loop corrections are
given in terms of final massless partons, however. In order to perform the (partial)
cancellation between the four-parton real and the 3-parton virtual contributions, it is
therefore necessary to get rid of the bothersome mass in the four-parton states. Several
recombinations are used in practice, which go under names such as ‘E’, ‘E0’, ‘p’ and
‘p0’ [OPA91]. In the ‘E’-type schemes, the energy of a recombined parton is given by
E;; = E;, + E;, and three-momenta may have to be adjusted accordingly. In the p’-
type schemes, on the other hand, three-momenta are added, p;; = p; + p;, and then
energies may have to be adjusted. These procedures result in different 3-jet topologies,
and therefore in different second-order differential 3-jet cross sections.

Within each scheme, a number of lesser points remain to be dealt with, in particular
what to do if a recombination of a nearby parton pair were to give an event with a non-qqg
flavour structure.

This code contains two alternative second-order 3-jet implementations, GKS and
ERT(Zhu). The latter is the recommended one and default. Other parameterizations
have also been made available that run together with JETSET 6 (but not adopted to the
current program), see [Sjo89, Mag89).

The GKS option is based on the GKS [Gut84] calculation, where some of the original
mistakes in FKSS [Fab82] have been corrected. The GKS formulae have the advantage of
giving the second-order corrections in closed analytic form, as not-too-long functions of
x1, T2, and the y cut. However, it is today recognized, also by the authors, that important
terms are still missing, and that the matrix elements should therefore not be taken too
seriously. The option is thus kept mainly for backwards compatibility.

The ERT(Zhu) generator [Zhu83] is based on the ERT matrix elements [El81], with
a Monte Carlo recombination procedure suggested by Kunszt [Kun81] and developed by
Ali [Ali82]. It has the merit of giving corrections in a convenient, parameterized form.
For practical applications, the main limitation is that the corrections are only given for
discrete values of the cut-off parameter y, namely y = 0.01, 0.02, 0.03, 0.04, and 0.05. At
these y values, the full second-order 3-jet cross section is written in terms of the ‘ratio
function” R(X,Y;y), defined by

1 dof* « a
- — B AXY {1 B RX,Y: } , 33
opdXdY =« of ) +7T ( v) (33)
where X = 21 — 2y = x4y — g, ¥ = w3 = x4, 0p is the lowest-order hadronic cross
section, and Ay(X,Y’) the standard first-order 3-jet cross section, cf. eq. (26). By Monte
Carlo integration, the value of R(X,Y;y) is evaluated in bins of (X,Y), and the result
parameterized by a simple function F(X,Y’;y). Further details are found in [Sj689].
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6.1.5 The matrix-element event generator scheme

The program contains parameterizations, separately, of the total first-order 3-jet rate, the
total second-order 3-jet rate, and the total 4-jet rate, all as functions of y (with oy as a
separate prefactor). These parameterizations have been obtained as follows:

The first-order 3-jet matrix element is almost analytically integrable; some small
finite pieces were obtained by a truncated series expansion of the relevant integrand.
The GKS second-order 3-jet matrix elements were integrated for 40 different y-cut
values, evenly distributed in Iny between a smallest value y = 0.001 and the kine-
matical limit y = 1/3. For each y value, 250 000 phase-space points were generated,
evenly in dIn(1 — z;) = dz;/(1 — x;), @ = 1,2, and the second-order 3-jet rate in
the point evaluated. The properly normalized sum of weights in each of the 40 y
points were then fitted to a polynomial in In(y~' — 2). For the ERT(Zhu) matrix
elements the parameterizations in eq. (33) were used to perform a corresponding
Monte Carlo integration for the five y values available.

The 4-jet rate was integrated numerically, separately for qqgg and qqq'q events, by
generating large samples of 4-jet phase-space points within the boundary y = 0.001.
Each point was classified according to the actual minimum y between any two
partons. The same events could then be used to update the summed weights for
40 different counters, corresponding to y values evenly distributed in Iny between
y = 0.001 and the kinematical limit y = 1/6. In fact, since the weight sums for large
y values only received contributions from few phase-space points, extra (smaller)
subsamples of events were generated with larger y cuts. The summed weights,
properly normalized, were then parameterized in terms of polynomials in In(y ! —5).
Since it turned out to be difficult to obtain one single good fit over the whole range
of y values, different parameterizations are used above and below y = 0.018. As
originally given, the qqq'q’ parameterization only took into account four ¢ flavours,
i.e. secondary bb pairs were not generated, but this has been corrected for LEP.

In the generation stage, each event is treated on its own, which means that the ag and
y values may be allowed to vary from event to event. The main steps are the following.

1.

The y value to be used in the current event is determined. If possible, this is
the value given by you, but additional constraints exist from the validity of the
parameterizations (y > 0.001 for GKS, 0.01 < y < 0.05 for ERT(Zhu)) and an
extra (user-modifiable) requirement of a minimum absolute invariant mass between
jets (which translates into varying y cuts due to the effects of initial-state QED
radiation).

The oy value is calculated.

For the y and «y values given, the relative two/three/four-jet composition is deter-
mined. This is achieved by using the parameterized functions of y for 3- and 4-jet
rates, multiplied by the relevant number of factors of a,. In ERT(Zhu), where the
second-order 3-jet rate is available only at a few y values, intermediate results are
obtained by linear interpolation in the ratio of second-order to first-order 3-jet rates.
The 3-jet and 4-jet rates are normalized to the analytically known second-order to-
tal event rate, i.e. divided by Rqcep of eq. (25). Finally, the 2-jet rate is obtained
by conservation of total probability.

If the combination of y and ay values is such that the total 3- plus 4-jet fraction is
larger than unity, i.e. the remainder 2-jet fraction negative, the y-cut value is raised
(for that event), and the process is started over at point 3.

The choice is made between generating a 2-, 3- or 4-jet event, according to the
relative probabilities.

For the generation of 4-jets, it is first necessary to make a choice between qqgg
and qqq'q’ events, according to the relative (parameterized) total cross sections. A
phase-space point is then selected, and the differential cross section at this point is
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evaluated and compared with a parameterized maximum weight. If the phase-space
point is rejected, a new one is selected, until an acceptable 4-jet event is found.

7. For 3-jets, a phase-space point is first chosen according to the first-order cross sec-
tion. For this point, the weight

Qg
W(.Tl,l’g;y) =1+ ?R<.§U1,$2,y> (34>

is evaluated. Here R(zi,z2;y) is analytically given for GKS [Gut84], while it is
approximated by the parameterization F'(X,Y;y) of eq. (33) for ERT(Zhu). Again,
linear interpolation of F/(X,Y;y) has to be applied for intermediate y values. The
weight W is compared with a maximum weight

Qg
Wmax(y) =1+ ?Rmax(y) ) (35)

which has been numerically determined beforehand and suitably parameterized. If
the phase-space point is rejected, a new point is generated, etc.

8. Massive matrix elements are not available for second-order QCD (but are in the
first-order option). However, if a 3- or 4-jet event determined above falls outside the
phase-space region allowed for massive quarks, the event is rejected and reassigned
to be a 2-jet event. (The way the y;; and y;;; variables of 4-jet events should
be interpreted for massive quarks is not even unique, so some latitude has been
taken here to provide a reasonable continuity from 3-jet events.) This procedure
is known not to give the expected full mass suppression, but is a reasonable first
approximation.

9. Finally, if the event is classified as a 2-jet event, either because it was initially so
assigned, or because it failed the massive phase-space cuts for 3- and 4-jets, the
generation of 2-jets is trivial.

6.1.6 Optimized perturbation theory

Theoretically, it turns out that the second-order corrections to the 3-jet rate are large. It is
therefore not unreasonable to expect large third-order corrections to the 4-jet rate. Indeed,
the experimental 4-jet rate is much larger than second order predicts (when fragmentation
effects have been included), if oy is determined based on the 3-jet rate [Sjo84a, JADSS].

The only consistent way to resolve this issue is to go ahead and calculate the full next
order. This is a tough task, however, so people have looked at possible shortcuts. For
example, one can try to minimize the higher-order contributions by a suitable choice of
the renormalization scale [Ste81] — ‘optimized perturbation theory’. This is equivalent
to a different choice for the Q% scale in «g, a scale which is not unambiguous anyway.
Indeed the standard value Q*> = s = E?_ is larger than the natural physical scale of
gluon emission in events, given that most gluons are fairly soft. One could therefore pick
another scale, Q% = fs, with f < 1. The O(as) 3-jet rate would be increased by such
a scale change, and so would the number of 4-jet events, including those which collapse
into 3-jet ones. The loop corrections depend on the (Q? scale, however, and compensate
the changes above by giving a larger negative contribution to the 3-jet rate.

The possibility of picking an optimized scale f is implemented as follows [Sj689].
Assume that the differential 3-jet rate at scale Q* = s is given by the expression

R3 = rag + 1m0 (36)

s 7

where Rs3, r; and ro are functions of the kinematical variables x; and x5 and the y cut,
as implied by the second-order formulae above, see e.g. eq. (33). When the coupling is
chosen at a different scale, Q> = fs, the 3-jet rate has to be changed to

R = 7l 4 rpa? (37)

S )
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r_
where 7] =7y,

33 — 2TLf
W In f s (38)

and o = as(fs). Since we only have the Born term for 4-jets, here the effects of a scale
change come only from the change in the coupling constant. Finally, the 2-jet cross section
can still be calculated from the difference between the total cross section and the 3- and
4-jet cross sections.

If an optimized scale is used in the program, the default value is f = 0.002, which is
favoured by the studies in ref. [Bet89]. (In fact, it is also possible to use a correspondingly
optimized Rqcp factor, eq. (25), but then the corresponding f is chosen independently
and much closer to unity.) The success of describing the jet rates should not hide the fact
that one is dabbling in (educated, hopefully) guesswork, and that any conclusions based
on this method have to be taken with a pinch of salt.

One special problem associated with the use of optimized perturbation theory is that
the differential 3-jet rate may become negative over large regions of the (z1,z2) phase
space. This problem already exists, at least in principle, even for a scale f = 1, since ry is
not guaranteed to be positive definite. Indeed, depending on the choice of y cut, ag value
and recombination scheme, one may observe a small region of negative differential 3-jet
rate for the full second-order expression. This region is centred around qqg configurations,
where the q and q are close together in one hemisphere and the g is alone in the other, i.e.
x1 & x9 & 1/2. It is well understood why second-order corrections should be negative in
this region [Dok89]: the q and g of a qg state are in a relative colour octet state, and thus
the colour force between them is repulsive, which translates into a negative second-order
term.

However, as f is decreased below unity, 7 receives a negative contribution from the In f
term, and the region of negative differential cross section has a tendency to become larger,
also after taking into account related changes in as. In an event-generator framework,
where all events are supposed to come with unit weight, it is clearly not possible to
simulate negative cross sections. What happens in the program is therefore that no 3-jet
events at all are generated in the regions of negative differential cross section, and that
the 3-jet rate in regions of positive cross sections is reduced by a constant factor, chosen
so that the total number of 3-jet events comes out as it should. This is a consequence
of the way the program works, where it is first decided what kind of event to generate,
based on integrated 3-jet rates in which positive and negative contributions are added up
with sign, and only thereafter the kinematics is chosen.

Based on our physics understanding of the origin of this negative cross section, the
approach adopted is as sensible as any, at least to that order in perturbation theory (what
one might strive for is a properly exponentiated description of the relevant region). It can
give rise to funny results for low f values, however, as observed by OPAL [OPA92] for
the energy—energy correlation asymmetry.

/
ry =79+ 171

6.1.7 Angular orientation

While pure 7 exchange gives a simple 1+ cos? @ distribution for the q (and q) direction in

qq events, Z° exchange and v*/Z° interference results in a forward-backward asymmetry.
If one introduces

hi(s) = 2e, {ae(l — P Pr) —wo(P — Pff)} Rx(s)eras

+{2veae(1 = BERD) = (02 + a)(PL = D} ()P orar . (39)
then the angular distribution of the quark is given by
d
d(TZGf) oc he(s)(1 + cos® b)) + 2hi(s) cos b; . (40)
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The angular orientation of a 3- or 4-jet event may be described in terms of three angles
X, 0 and ; for 2-jet events only 6 and ¢ are necessary. From a standard orientation, with
the q along the +2z axis and the q in the zz plane with p, > 0, an arbitrary orientation may
be reached by the rotations +y in azimuthal angle, 4+ in polar angle, and +¢ in azimuthal
angle, in that order. Differential cross sections, including QFD effects and arbitrary beam
polarizations have been given for 2- and 3-jet events in refs. [Ols80, Sch80]. We use the
formalism of ref. [Ols80], with translation from their terminology according toy — 7 — x
and ¢~ — —(¢+ m/2). The resulting formulae are tedious, but straightforward to apply,
once the internal jet configuration has been chosen. 4-jet events are approximated by 3-jet
ones, by joining the two gluons of a qqgg event and the ' and @’ of a qqq'q’ event into one
effective jet. This means that some angular asymmetries are neglected [Ali80a], but that
weak effects are automatically included. It is assumed that the second-order 3-jet events
have the same angular orientation as the first-order ones, some studies on this issue may
be found in [Ko6r85]. Further, the formulae normally refer to the massless case; only for
the QED 2- and 3-jet cases are mass corrections available.

The main effect of the angular distribution of multijet events is to smear the lowest-
order result, i.e. to reduce any anisotropies present in 2-jet systems. In the parton-shower
option of the program, only the initial qq axis is determined. The subsequent shower
evolution then de facto leads to a smearing of the jet axis, although not necessarily in full
agreement with the expectations from multijet matrix-element treatments.

6.1.8 Initial-state radiation

Initial-state photon radiation has been included using the formalism of ref. [Ber82]. Here
each event contains either no photon or one, i.e. it is a first-order non-exponentiated
description. The main formula for the hard radiative photon cross section is

Ao G (mi ~ 1) T —e) ey (41)

2
dz, 7 m2 T

where z, is the photon energy fraction of the beam energy, § = (1 — z,)s is the squared
reduced hadronic c.m. energy, and oy is the ordinary annihilation cross section at the
reduced energy. In particular, the selection of jet flavours should be done according to
expectations at the reduced energy. The cross section is divergent both for z, — 1 and
2, — 0. The former is related to the fact that oy has a 1/5 singularity (the real photon
pole) for § — 0. An upper cut on z., can here be chosen to fit the experimental setup.
The latter is a soft photon singularity, which is to be compensated in the no-radiation
cross section. A requirement x, > 0.01 has therefore been chosen so that the hard-
photon fraction is smaller than unity. In the total cross section, effects from photons
with z, < 0.01 are taken into account, together with vertex and vacuum polarization
corrections (hadronic vacuum polarizations using a simple parameterization of the more
complicated formulae of ref. [Ber82]).

The hard photon spectrum can be integrated analytically, for the full v*/Z° structure
including interference terms, provided that no new flavour thresholds are crossed and that
the Rqcp term in the cross section can be approximated by a constant over the range
of allowed § values. In fact, threshold effects can be taken into account by standard
rejection techniques, at the price of not obtaining the exact cross section analytically, but
only by an effective Monte Carlo integration taking place in parallel with the ordinary
event generation. In addition to z., the polar angle 6, and azimuthal angle ¢, of the
photons are also to be chosen. Further, for the orientation of the hadronic system, a
choice has to be made whether the photon is to be considered as having been radiated
from the et or from the e™.

Final-state photon radiation, as well as interference between initial- and final-state
radiation, has been left out of this treatment. The formulae for ete™ — ptu~ cannot
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be simply taken over for the case of outgoing quarks, since the quarks as such only live
for a short while before turning into hadrons. Another simplification in our treatment is
that effects of incoming polarized e* beams have been completely neglected, i.e. neither
the effective shift in azimuthal distribution of photons nor the reduction in polarization is
included. The polarization parameters of the program are to be thought of as the effective
polarization surviving after initial-state radiation.

6.1.9 Alternative matrix elements

The program contains two sets of ‘toy model’ matrix elements, one for an Abelian vector
gluon model and one for a scalar gluon model. Clearly both of these alternatives are
already excluded by data, and are anyway not viable alternatives for a consistent theory
of strong interactions. They are therefore included more as references to show how well
the characteristic features of QCD can be measured experimentally.

Second-order matrix elements are available for the Abelian vector gluon model. These
are easily obtained from the standard QCD matrix elements by a substitution of the
Casimir group factors: Cp =4/3 — 1, No =3 — 0, and Ty = ng/2 — 3n;. First-order
matrix elements contain only C'r; therefore the standard first-order QCD results may be
recovered by a rescaling of oy by a factor 4/3. In second order the change of N¢ to 0
means that g — gg couplings are absent from the Abelian model, while the change of T
corresponds to an enhancement of the g — ¢'q’ coupling, i.e. to an enhancement of the
qaqq'q 4-jet event rate.

The second-order corrections to the 3-jet rate turn out to be strongly negative — if
oy is fitted to get about the right rate of 4-jet events, the predicted differential 3-jet rate
is negative almost everywhere in the (z1,x2) plane. Whether this unphysical behaviour
would be saved by higher orders is unclear. It has been pointed out that the rate can
be made positive by a suitable choice of scale, since oy runs in opposite directions in an
Abelian model and in QCD [Bet89]. This may be seen directly from eq. (38), where the
term 33 = 11N is absent in the Abelian model, and therefore the scale-dependent term
changes sign. In the program, optimized scales have not been implemented for this toy
model. Therefore the alternatives provided for you are either to generate only 4-jet events,
or to neglect second-order corrections to the 3-jet rate, or to have the total 3-jet rate set
vanishing (so that only 2- and 4-jet events are generated). Normally we would expect the
former to be the one of most interest, since it is in angular (and flavour) distributions
of 4-jet events that the structure of QCD can be tested. Also note that the ‘correct’
running of ag is not included; you are expected to use the option where ay is just given
as a constant number.

The scalar gluon model is even more excluded than the Abelian vector one, since
differences appear already in the 3-jet matrix element [Lae80]:

do 3
d[L‘l dl‘g > (1 — ZL‘l)(l — l‘g)

(42)

when only ~ exchange is included. The axial part of the Z° gives a slightly different
shape; this is included in the program but does not make much difference. The angular
orientation does include the full v*/Z° interference [Lae80], but the main interest is in the
3-jet topology as such [Ell79]. No higher-order corrections are included. It is recommended
to use the option of a fixed «y also here, since the correct running is not available.

6.2 Decays of Onia Resonances

Many different possibilities are open for the decay of heavy J¥¢ = 17~ onia resonances.
Of special interest are the decays into three gluons or two gluons plus a photon, since
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these offer unique possibilities to study a ‘pure sample’ of gluon jets. A routine for this
purpose is included in the program. It was written at a time where the expectations were
to find toponium at PETRA energies. Given the large value of the top mass, weak decays
dominate, to the extent that the top quark decays weakly even before a bound toponium
state is formed, and thus the routine will be of no use for top. The charm system, on the
other hand, is far too low in mass for a jet language to be of any use. The only application
is therefore likely to be for YT, which unfortunately also is on the low side in mass.
The matrix element for qq — ggg is (in lowest order) [Kol78§]

1 dogg 1 {(1—x1)2+(1—x2)2+(1—:1:3)2} | (43)
Oggg d.Tl d.CL’Q 72 -9 Lol T1X3 1T

where, as before, z; = 2E;/F., in the c.m. frame of the event. This is a well-defined

expression, without the kind of singularities encountered in the qgg matrix elements. In

principle, no cuts at all would be necessary, but for reasons of numerical simplicity we

implement a y cut as for continuum jet production, with all events not fulfilling this cut

considered as (effective) gg events. For ggg events, each gg invariant mass is required to
be at least 2 GeV.

Another process is qq — 7gg, obtained by replacing a gluon in qq — ggg by a photon.

This process has the same normalized cross section as the one above, if e.g. x; is taken to
refer to the photon. The relative rate is [Kol78]

Oy _ 36 CqQem (44)
Oggg 5 as(Q?)

Here e is the charge of the heavy quark, and the scale in o, has been chosen as the mass
of the onium state. If the mass of the recoiling gg system is lower than some cut-off (by
default 2 GeV), the event is rejected.

In the present implementation the angular orientation of the ggg and ~gg events is
given for the ete™ — 4* — onium case [Kol78] (optionally with beam polarization effects
included), i.e. weak effects have not been included, since they are negligible at around
10 GeV.

It is possible to start a perturbative shower evolution from either of the two states
above. However, for T the phase space for additional evolution is so constrained that not
much is to be gained from that. We therefore do not recommend this possibility. The
shower generation machinery, when starting up from a ~gg configuration, is constructed
such that the photon energy is not changed. This means that there is currently no
possibility to use showers to bring the theoretical photon spectrum in better agreement
with the experimental one.

In string fragmentation language, a ggg state corresponds to a closed string triangle
with the three gluons at the corners. As the partons move apart from a common origin,
the string triangle expands. Since the photon does not take part in the fragmentation,
the vygg state corresponds to a double string running between the two gluons.

6.3 Routines and Common Block Variables
6.3.1 efe” continuum event generation

The only routine a normal user will call to generate eTe™ continuum events is PYEEVT.
The other routines listed below, as well as PYSHOW (see section 10.4), are called by PYEEVT.

CALL PYEEVT (KFL,ECM)
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Purpose: to generate a complete event ete™ — v*/Z% — qq — parton shower — hadrons
according to QFD and QCD cross sections. As an alternative to parton show-
ers, second-order matrix elements are available for qq + qqg + qqgg + qqa'q

production.
KFL : flavour of events generated.
=0 : mixture of all allowed flavours according to relevant probabilities.
= 1 - 8 : primary quarks are only of the specified flavour KFL.
ECM : total c.m. energy of system.

Remark: Each call generates one event, which is independent of preceding ones, with
one exception, as follows. If radiative corrections are included, the shape of
the hard photon spectrum is recalculated only with each PYXTEE call, which
normally is done only if KFL, ECM or MSTJ(102) is changed. A change of e.g.
the Z° mass in mid-run has to be followed either by a user call to PYXTEE or
by an internal call forced e.g. by putting MSTJ(116)=3.

SUBROUTINE PYXTEE(KFL,ECM,XTOT) : to calculate the total hadronic cross section, in-
cluding quark thresholds, weak, beam polarization, and QCD effects and ra-
diative corrections. In the process, variables necessary for the treatment of
hard photon radiation are calculated and stored.

KFL, ECM : as for PYEEVT.
XTOT : the calculated total cross section in nb.

SUBROUTINE PYRADK(ECM,MK,PAK,THEK,PHIK,ALPK) : to describe initial-state hard ~
radiation.

SUBROUTINE PYXKFL (KFL,ECM,ECMC,KFLC) : to generate the primary quark flavour in
case this is not specified by you.

SUBROUTINE PYXJET(ECM,NJET,CUT) : to determine the number of jets (2, 3 or 4) to be
generated within the kinematically allowed region (characterized by CUT = ycyu)
in the matrix-element approach; to be chosen such that all probabilities are
between 0 and 1.

SUBROUTINE PYX3JT(NJET,CUT,KFL,ECM,X1,X2) : to generate the internal momentum
variables of a 3-jet event, qqg, according to first- or second-order QCD matrix
elements.

SUBROUTINE PYX4JT(NJET,CUT,KFL,ECM,KFLN,X1,X2,X4,X12,X14) : to generate the
internal momentum variables for a 4-jet event, qqgg or qqq'q, according to
second-order QCD matrix elements.

SUBROUTINE PYXDIF(NC,NJET,KFL,ECM,CHI,THE,PHI) : to describe the angular orien-
tation of the jets. In first-order QCD the complete QED or QFD formulae are
used; in second order 3-jets are assumed to have the same orientation as in
first, and 4-jets are approximated by 3-jets.

6.3.2 A routine for onium decay

In PYONIA we have implemented the decays of heavy onia resonances into three gluons or
two gluons plus a photon, which are the dominant non-background-like decays of T.

CALL PYONIA(KFL,ECM)

Purpose: to simulate the process efe™ — +* — 17~ onium resonance — (ggg or ggvy) —
shower — hadrons.
KFL : the flavour of the quark giving rise to the resonance.
=0 : generate ggg events alone.
= 1 - 8 : generate ggg and ggy events in mixture determined by the squared
charge of flavour KFL, see eq. (44). Normally KFL= 5.
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ECM : total c.m. energy of system.

6.3.3 Common block variables

The status codes and parameters relevant for the ete™ routines are found in the com-
mon block PYDAT1. This common block also contains more general status codes and
parameters, described elsewhere.

COMMON/PYDAT1/MSTU(200) ,PARU(200) ,MSTJ(200) ,PARJ(200)

Purpose: to give access to a number of status codes and parameters regulating the
performance of the ete™ event generation routines.

MSTJ(101)
=0 :
=1 :
=2 :

I I
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Note 2:

MSTJ(102)

: (D=5) gives the type of QCD corrections used for continuum events.

only q events are generated.

qq + qqg events are generated according to first-order QCD.

qq + qag + qqge + qaq’q’ events are generated according to second-order
QCD.

qaq+ qqg + qagg + qaqq’q’ events are generated, but without second-order
corrections to the 3-jet rate.

a parton shower is allowed to develop from an original qq pair, see
MSTJ(38) - MSTJ(50) for details.

only qqg events are generated (within same matrix-element cuts as for
=1). Since the change in flavour composition from mass cuts or radiative
corrections is not taken into account, this option is not intended for
quantitative studies.

only qqgg and qqq'q events are generated (as for =2). The same warning
as for =-1 applies.

only qqgg events are generated (as for =2). The same warning as for =-1
applies.

only qqq'q events are generated (as for =2). The same warning as for
=-1 applies.

MSTJ(101) is also used in PYONIA, with

ggg+ygg events are generated according to lowest-order matrix elements.
a parton shower is allowed to develop from the original ggg or ggv con-
figuration, see MSTJ(38) - MSTJ(50) for details.

The default values of fragmentation parameters have been chosen to
work well with the default parton-shower approach above. If any of
the other options are used, or if the parton shower is used in non-default
mode, it is normally necessary to retune fragmentation parameters. As
an example, we note that the second-order matrix-element approach
(MSTJ(101)=2) at PETRA/PEP energies gives a better description when
the a and b parameters of the symmetric fragmentation function are set
to a =PARJ(41)=1, b =PARJ(42)=0.7, and the width of the transverse
momentum distribution to ¢ =PARJ(21)=0.40. In principle, one also
ought to change the joining parameter to PARJ(33)=PARJ(35)=1.1 to
preserve a flat rapidity plateau, but if this should be forgotten, it does
not make too much difference. For applications at TRISTAN or LEP,
one has to change the matrix-element approach parameters even more,
to make up for additional soft gluon effects not covered in this approach.

: (D=2) inclusion of weak effects (Z° exchange) for flavour production, angu-

lar orientation, cross sections and initial-state photon radiation in continuum
events.
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=1 : QED, i.e. no weak effects are included.

=2 : QFD, i.e. including weak effects.

=3 : as =2, but at initialization in PYXTEE the Z° width is calculated from
sin?fy, e and Z° and quark masses (including bottom and top thresh-
old factors for MSTJ(103) odd), assuming three full generations, and the
result is stored in PARJ(124).

MSTJ(103) : (D=T7) mass effects in continuum matrix elements, in the form MSTJ(103)

= My +2Ms5 +4Ms, where M; = 0 if no mass effects and M; = 1 if mass effects

should be included. Here;

N

My threshold factor for new flavour production according to QFD result;

M, gluon emission probability (only applies for [MSTJ(101) < 1, otherw1se
no mass effects anyhow);

M; angular orientation of event (only applies for [MSTJ(101)[< 1 and

MSTJ(102)=1, otherwise no mass effects anyhow).

MSTJ(104) : (D=5) number of allowed flavours, i.e. flavours that can be produced in a
continuum event if the energy is enough. A change to 6 makes top production
allowed above the threshold, etc. Note that in qqq'q’ events only the first five
flavours are allowed in the secondary pair, produced by a gluon breakup.

MSTJ(105) : (D=1) fragmentation and decay in PYEEVT and PYONIA calls.

=0 : no PYEXEC calls, i.e. only matrix-element and/or parton-shower treat-
ment, and collapse of small jet systems into one or two particles (in
PYPREP).

=1: PYEXEC calls are made to generate fragmentation and decay chain.

= -1: no PYEXEC calls and no collapse of small jet systems into one or two

particles (in PYPREP).
MSTJ(106) : (D=1) angular orientation in PYEEVT and PYONIA.
=0 : standard orientation of events, i.e. q along +2z axis and @ along —z axis
or in xz plane with p, > 0 for continuum events, and g;gsg3 or ygogs3 in
xz plane with g; or v along the 42z axis for onium events.

=1 : random orientation according to matrix elements.
MSTJ(107) : (D=0) radiative corrections to continuum events.
=0 : no radiative corrections.
=1: initial-state radiative corrections (including weak effects for MSTJ(102)=
2 or 3).

MSTJ(108) : (D=2) calculation of ay for matrix-element alternatives. The MSTU(111)
and PARU(112) values are automatically overwritten in PYEEVT or PYONIA calls

accordingly.
=0 : fixed oy value as given in PARU(111).
=1 : first-order formula is always used, with Agcp given by PARJ(121).
=2 : first- or second-order formula is used, depending on value of MSTJ(101),

with Aqep given by PARJ(121) or PARJ(122).
MSTJ(109) : (D=0) gives a possibility to switch from QCD matrix elements to some
alternative toy models. Is not relevant for shower evolution, MSTJ(101)=5,
Where one can use MSTJ(49) instead.
=0 : standard QCD scenario.
=1: a scalar gluon model. Since no second-order corrections are available in
this scenario, one can only use this with MSTJ(101) = 1 or -1. Also note
that the event-as-a-whole angular distribution is for photon exchange
only (i.e. no weak effects), and that no higher-order corrections to the
total cross section are included.

=2 : an Abelian vector gluon theory, with the colour factors Cp =1 (= 4/3
in QCD), N¢ = 0 (= 3 in QCD) and Tk = 3ny (= ns/2 in QCD).
If one selects apeian = (4/3)aqep, the 3-jet cross section will agree
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MSTJ(111)

MSTJ(115)

MSTJ(116)
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1

0 :

0 :
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2 :

3 :

with the QCD one, and differences are to be found only in 4-jets. The
MSTJ(109)=2 option has to be run with MSTJ(110)=1 and MSTJ(111)=0;
if need be, the latter variables will be overwritten by the program.
Warning: second-order corrections give a large negative contribution to
the 3-jet cross section, so large that the whole scenario is of doubtful use.
In order to make the second-order options work at all, the 3-jet cross
section is here by hand set exactly equal to zero for MSTJ(101)=2. It is
here probably better to use the option MSTJ(101)=3, although this is not
a consistent procedure either.

: (D=2) choice of second-order contributions to the 3-jet rate.

the GKS second-order matrix elements.

the Zhu parameterization of the ERT matrix elements, based on the pro-
gram of Kunszt and Alj, i.e. in historical sequence ERT /Kunszt/Ali/Zhu.
The parameterization is available for y = 0.01, 0.02, 0.03, 0.04 and 0.05.
Values outside this range are put at the nearest border, while those in-
side it are given by a linear interpolation between the two nearest points.
Since this procedure is rather primitive, one should try to work at one of
the values given above. Note that no Abelian QCD parameterization is
available for this option.

: (D=0) use of optimized perturbation theory for second-order matrix ele-
ments (it can also be used for first-order matrix elements, but here it only
corresponds to a trivial rescaling of the oy argument).

no optimization procedure; i.e. Q* = E2 .

an optimized Q? scale is chosen as Q? = fE? , where f =PARJ(128) for
the total cross section R factor, while f =PARJ(129) for the 3- and 4-jet
rates. This f value enters via the ag, and also via a term proportional
to a?In f. Some constraints are imposed; thus the optimized ‘3-jet’ con-
tribution to R is assumed to be positive (for PARJ(128)), the total 3-jet
rate is not allowed to be negative (for PARJ(129)), etc. However, there is
no guarantee that the differential 3-jet cross section is not negative (and
truncated to 0) somewhere (this can also happen with f = 1, but is then
less frequent). The actually obtained f values are stored in PARJ(168)
and PARJ(169), respectively. If an optimized Q? scale is used, then the
Aqgep (and ag) should also be changed. With the value f = 0.002, it
has been shown [Bet89] that a Aqcp = 0.100 GeV gives a reasonable
agreement; the parameter to be changed is PARJ(122) for a second-order
running ag. Note that, since the optimized Q? scale is sometimes below
the charm threshold, the effective number of flavours used in o may well
be 4 only. If one feels that it is still appropriate to use 5 flavours (one
choice might be as good as the other), it is necessary to put MSTU(113)=5.

: (D=1) documentation of continuum or onium events, in increasing order of
completeness.

only the parton shower, the fragmenting partons and the generated
hadronic system are stored in the PYJETS common block.

also a radiative photon is stored (for continuum events).

also the original eTe™ are stored (with K(I,1)=21).

also the v or v*/Z° exchanged for continuum events, the onium state for
resonance events is stored (with K(I,1)=21).

: (D=1) initialization of total cross section and radiative photon spectrum

in PYEEVT calls.

0 :

1

never; cannot be used together with radiative corrections.
calculated at first call and then whenever KFL or MSTJ(102) is changed
or ECM is changed by more than PARJ(139).
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2 : calculated at each call.

=3: everything is re-initialized in the next call, but MSTJ(116) is afterwards

automatically put =1 for use in subsequent calls.

MSTJ(119) : (I) check on need to re-initialize PYXTEE.
MSTJ(120) : (R) type of continuum event generated with the matrix-element option
(with the shower one, the result is always =1).
: qq.
qqe.
qqgg from Abelian (QED-like) graphs in matrix element.
qqgg from non-Abelian (i.e. containing triple-gluon coupling) graphs in
matrix element.

=5 qaq'q.
MSTJ(121) : (R) flag set if a negative differential cross section was encountered in the
latest PYX3JT call. Events are still generated, but maybe not quite according
to the distribution one would like (the rate is set to zero in the regions of
negative cross section, and the differential rate in the regions of positive cross
section is rescaled to give the ‘correct’ total 3-jet rate).

PARJ(121) : (D=1.0 GeV) A value used in first-order calculation of ay in the matrix-
element alternative.

PARJ(122) : (D=0.25 GeV) A values used in second-order calculation of ay in the matrix-
element alternative.

PARJ(123) : (D=91.187 GeV) mass of Z° as used in propagators for the QFD case.

PARJ(124) : (D=2.489 GeV) width of Z° as used in propagators for the QFD case.
Overwritten at initialization if MSTJ(102)=3.

PARJ(125) : (D=0.01) yeyt, minimum squared scaled invariant mass of any two partons
in 3- or 4-jet events; the main user-controlled matrix-element cut. PARJ(126)
provides an additional constraint. For each new event, it is additionally
checked that the total 3- plus 4-jet fraction does not exceed unity; if so the
effective y cut will be dynamically increased. The actual y-cut value is stored
in PARJ(150), event by event.

PARJ(126) : (D=2. GeV) minimum invariant mass of any two partons in 3- or 4-jet
events; a cut in addition to the one above, mainly for the case of a radiative
photon lowering the hadronic c.m. energy significantly.

PARJ(127) : (D=1. GeV) is used as a safety margin for small colour-singlet jet systems,
cf. PARJ(32), specifically qq’ masses in qqq'q 4-jet events and gg mass in
onium ygg events.

PARJ(128) : (D=0.25) optimized Q? scale for the QCD R (total rate) factor for the
MSTJ(111)=1 option is given by Q* = fE?2 | where f =PARJ(128). For various
reasons the actually used f value may be increased compared with the nominal
one; while PARJ(128) gives the nominal value, PARJ(168) gives the actual one
for the current event.

PARJ(129) : (D=0.002) optimized Q? scale for the 3- and 4-jet rate for the MSTJ(111)=1
option is given by Q% = fE? . where f =PARJ(129). For various reasons the
actually used f value may be increased compared with the nominal one; while
PARJ(129) gives the nominal value, PARJ(169) gives the actual one for the
current event. The default value is in agreement with the studies of Bethke
[Bet89].

PARJ(131), PARJ(132) : (D=2*0.) longitudinal polarizations P;" and P of incoming
et and e”.

PARJ(133) : (D=0.) transverse polarization Pr = y/P{ Py, with P and Py transverse
polarizations of incoming e and e™.

PARJ(134) : (D=0.) mean of transverse polarization directions of incoming e* and e,

Il
DWW -
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Ap = (o7 + ¢7)/2, with ¢ the azimuthal angle of polarization, leading to a
shift in the ¢ distribution of jets by A¢.

PARJ(135) : (D=0.01) minimum photon energy fraction (of beam energy) in initial-state
radiation; should normally never be changed (if lowered too much, the fraction
of events containing a radiative photon will exceed unity, leading to problems).

PARJ(136) : (D=0.99) maximum photon energy fraction (of beam energy) in initial-state
radiation; may be changed to reflect actual trigger conditions of a detector (but
must always be larger than PARJ(135)).

PARJ(139) : (D=0.2 GeV) maximum deviation of E, from the corresponding value at
last PYXTEE call, above which a new call is made if MSTJ(116)=1.

PARJ(141) : (R) value of R, the ratio of continuum cross section to the lowest-order
muon pair production cross section, as given in massless QED (i.e. three times
the sum of active quark squared charges, possibly modified for polarization).

PARJ(142) : (R) value of R including quark-mass effects (for MSTJ(102)=1) and/or weak
propagator effects (for MSTJ(102)=2).

PARJ(143) : (R) value of R as PARJ(142), but including QCD corrections as given by
MSTJ(101).

PARJ(144) : (R) value of R as PARJ(143), but additionally including corrections from
initial-state photon radiation (if MSTJ(107)=1). Since the effects of heavy
flavour thresholds are not simply integrable, the initial value of PARJ(144) is
updated during the course of the run to improve accuracy.

PARJ(145) - PARJ(148) : (R) absolute cross sections in nb as for the cases PARJ(141)
- PARJ(144) above.

PARJ(150) : (R) current effective matrix element cut-off y.., as given by PARJ(125),
PARJ(126) and the requirements of having non-negative cross sections for 2-,
3- and 4-jet events. Not used in parton showers.

PARJ(151) : (R) value of c.m. energy ECM at last PYXTEE call.

PARJ(152) : (R) current first-order contribution to the 3-jet fraction; modified by mass
effects. Not used in parton showers.

PARJ(153) : (R) current second-order contribution to the 3-jet fraction; modified by
mass effects. Not used in parton showers.

PARJ(154) : (R) current second-order contribution to the 4-jet fraction; modified by
mass effects. Not used in parton showers.

PARJ(155) : (R) current fraction of 4-jet rate attributable to qqq'q events rather than
qqgg ones; modified by mass effects. Not used in parton showers.

PARJ(156) : (R) has two functions when using second-order QCD. For a 3-jet event,
it gives the ratio of the second-order to the total 3-jet cross section in the
given kinematical point. For a 4-jet event, it gives the ratio of the modified
4-jet cross section, obtained when neglecting interference terms whose colour
flow is not well defined, to the full unmodified one, all evaluated in the given
kinematical point. Not used in parton showers.

PARJ(157) - PARJ(159) : (I) used for cross-section calculations to include mass thresh-
old effects to radiative photon cross section. What is stored is basic cross
section, number of events generated and number that passed cuts.

PARJ(160) : (R) nominal fraction of events that should contain a radiative photon.

PARJ(161) - PARJ(164) : (I) give shape of radiative photon spectrum including weak
effects.

PARJ(168) : (R) actual f value of current event in optimized perturbation theory for R;
see MSTJ(111) and PARJ(128).

PARJ(169) : (R) actual f value of current event in optimized perturbation theory for 3-
and 4-jet rate; see MSTJ(111) and PARJ(129).

PARJ(171) : (R) fraction of cross section corresponding to the axial coupling of quark
pair to the intermediate v*/Z° state; needed for the Abelian gluon model 3-jet
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matrix element.

6.4 Examples

An ordinary ete™ annihilation event in the continuum, at a c.m. energy of 91 GeV, may
be generated with

CALL PYEEVT(0,91DO0)

In this case a qq event is generated, including weak effects, followed by parton-shower
evolution and fragmentation/decay treatment. Before a call to PYEEVT, however, a number
of default values may be changed, e.g. MSTJ(101)=2 to use second-order QCD matrix
elements, giving a mixture of qq, qqg, qqgg, and qqq'q events, MSTJ(102)=1 to have QED
only, MSTJ(104)=6 to allow tt production as well, MSTJ(107)=1 to include initial-state
photon radiation (including a treatment of the Z° pole), PARJ(123)=92.0 to change the
7° mass, PARJ(81)=0.3 to change the parton-shower A value, or PARJ(82)=1.5 to change
the parton-shower cut-off. If initial-state photon radiation is used, some restrictions apply
to how one can alternate the generation of events at different energies or with different
7° mass, etc. These restrictions are not there for efficiency reasons (the extra time for
recalculating the extra constants every time is small), but because it ties in with the
cross-section calculations (see PARJ(144)).

Most parameters can be changed independently of each other. However, if just one
or a few parameters/switches are changed, one should not be surprised to find a rather
bad agreement with the data, like e.g. a too low or high average hadron multiplicity. It
is therefore usually necessary to retune one parameter related to the perturbative QCD
description, like ag or A, one of the two parameters a and b of the Lund symmetric
fragmentation function (since they are so strongly correlated, it is often not necessary
to retune both of them), and the average fragmentation transverse momentum — see
Note 2 of the MSTJ(101) description for an example. For very detailed studies it may be
necessary to retune even more parameters.

The three-gluon and gluon—gluon—photon decays of T may be simulated by a call

CALL PYONIA(5,9.46D0)

A typical program for analysis of ete™ annihilation events at 200 GeV might look
something like

IMPLICIT DOUBLE PRECISION(A-H, 0-Z)
IMPLICIT INTEGER(I-N)
INTEGER PYK,PYCHGE,PYCOMP
COMMON/PYJETS/N,NPAD, K (4000,5) ,P(4000,5) ,V(4000,5)
COMMON/PYDAT1/MSTU(200) ,PARU(200) ,MSTJ(200) ,PARJ(200)
COMMON/PYDAT2/KCHG (500,4) ,PMAS (500,4) ,PARF (2000) , VCKM(4,4)
COMMON/PYDAT3/MDCY (500, 3) ,MDME (8000,2) ,BRAT(8000) ,KFDP (8000, 5)
MDCY (PYCOMP(111),1)=0 ! put piO stable
MSTJ(107)=1 ! include initial-state radiation
PARU(41)=1D0 ! use linear sphericity
..... I other desired changes
CALL PYTABU(10) ! initialize analysis statistics
DO 100 IEV=1,1000 I loop over events
CALL PYEEVT(0,200DO0) | generate new event
IF(IEV.EQ.1) CALL PYLIST(2) I 1list first event
CALL PYTABU(11) ! save particle composition
! statistics
[

CALL PYEDIT(2) remove decayed particles
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CALL PYSPHE(SPH,APL)
IF(SPH.LT.0DO) GOTO 100

CALL PYEDIT(31)
IF(IEV.EQ.1) CALL PYLIST(2)

100 CONTINUE
CALL PYTABU(12)
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linear sphericity analysis

too few particles in event for
PYSPHE to work on it (unusual)

orient event along axes above

list first treated event

fill analysis statistics

now do thrust analysis

more analysis statistics

print particle composition
statistics
print analysis statistics



7 Process Generation

Much can be said about the processes in PYTHIA and the way they are generated. There-
fore the material has been split into three sections. In the current one the philosophy
underlying the event generation scheme is presented. Here we provide a generic descrip-
tion, where some special cases are swept under the carpet. In the next section, the
existing processes are enumerated, with some comments about applications and limita-
tions. Finally, in the third section the generation routines and common block switches
are described.

The section starts with a survey of parton distributions, followed by a detailed descrip-
tion of the simple 2 — 2 and 2 — 1 hard subprocess generation schemes, including pairs
of resonances. This is followed by a few comments on more complicated configurations,
and on nonperturbative processes.

7.1 Parton Distributions

The parton distribution function f¢(z, Q%) parameterizes the probability to find a parton
1 with a fraction x of the beam energy when the beam particle a is probed by a hard
scattering at virtuality scale Q?. Usually the momentum-weighted combination z f¢(z, Q%)
is used, for which the normalization condition }; fol drzf(r,Q*) = 1 normally applies.
The Q? dependence of parton distributions is perturbatively calculable, see section 10.3.1.

The parton distributions in PYTHIA come in many shapes, as shown in the following.

7.1.1 Baryons

For protons, many sets exist on the market. These are obtained by fits to experimental
data, constrained so that the Q? dependence is in accordance with the standard QCD
evolution equations. The current default in PyTHIA is GRV 94L [Gli95], a simple leading-
order fit. Several other sets are found in PYTHIA. The complete list is:

e EHLQ sets 1 and 2 [Eic84];

DO sets 1 and 2 [Duk82;

the GRV 92L (updated version) fit [G1i92];

the CTEQ 3L, CTEQ 3M and CTEQ 3D fits [Lai95];

the GRV 94L, GRV 94M and GRV 94D fits [Gli95]; and

the CTEQ 5L and CTEQ 5M1 fits [Lai00].

Of these, EHLQ, DO, GRV 92L, CTEQ 3L, GRV94L and CTEQ5L are leading-order
parton distributions, while CTEQ 3D and GRV94D are in the next-to-leading-order DIS
scheme and the rest in the next-to-leading order MS scheme. The EHLQ and DO sets
are by now rather old, and are kept mainly for backwards compatibility. Since only Born-
level matrix elements are included in the program, there is no particular reason to use
higher-order parton distributions — the resulting combination is anyway only good to
leading-order accuracy. (Some higher-order corrections are effectively included by the
parton-shower treatment, but there is no exact match.)

There is a steady flow of new parton-distribution sets on the market. To keep track
of all of them is a major work on its own. Therefore PYTHIA contains an interface to an
external library of parton distribution functions, PDFLIB [P1093]. This is a truly ency-
clopedic collection of almost all proton, pion and photon parton distributions proposed
since the late 70’s. Three dummy routines come with the PYTHIA package, so as to avoid
problems with unresolved external references if PDFLIB is not linked. One should also
note that PYTHIA does not check the results, but assumes that sensible answers will be
returned, also outside the nominal (z, Q%) range of a set. Only the sets that come with
PyTHIA have been suitably modified to provide reasonable answers outside their nominal
domain of validity.
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From the proton parton distributions, those of the neutron are obtained by isospin
conjugation, i.e. f* = f and f} = fP.

The program does allow for incoming beams of a number of hyperons: A° X709+,
=70 and Q. Here one has essentially no experimental information. One could imagine
to construct models in which valence s quarks are found at larger average x values than
valence u and d ones, because of the larger s-quark mass. However, hyperon beams is a
little-used part of the program, included only for a few specific studies. Therefore a simple
approach has been taken, in which an average valence quark distribution is constructed as
feat = (faval T fiva1)/3, according to which each valence quark in a hyperon is assumed to
be distributed. Sea-quark and gluon distributions are taken as in the proton. Any proton
parton distribution set may be used with this procedure.

7.1.2 Mesons and photons

Data on meson parton distributions are scarce, so only very few sets have been con-
structed, and only for the 7%. PYTHIA contains the Owens set 1 and 2 parton distribu-
tions [Owe84], which for a long time were essentially the only sets on the market, and the
more recent dynamically generated GRV LO (updated version) [Glii92a]. The latter one
is the default in PYTHIA. Further sets are found in PDFLIB and can therefore be used by
PyTHIA, just as described above for protons.

Like the proton was used as a template for simple hyperon sets, so also the pion is
used to derive a crude ansatz for K*¥/K§/K?. The procedure is the same, except that now

fval (f val dval>/2

Sets of photon parton distributions have been obtained as for hadrons; an additional
complication comes from the necessity to handle the matching of the vector meson dom-
inance (VMD) and the perturbative pieces in a consistent manner. New sets have been
produced where this division is explicit and therefore especially well suited for applications
to event generation[Sch95]. The Schuler and Sjostand set 1D is the default. Although the
vector-meson philosophy is at the base, the details of the fits do not rely on pion data,
but only on Fy data. Here follows a brief summary of relevant details.

Real photons obey a set of inhomogeneous evolution equations, where the inhomoge-
neous term is induced by v — qq branchings. The solution can be written as the sum of

two terms,

f(e, Q%) = [N (2, Q% QF) + [T (2, Q% Q5) (45)
where the former term is a solution to the homogeneous evolution with a (nonperturba-
tive) input at @@ = @y and the latter is a solution to the full inhomogeneous equation
with boundary condition f7'FT(z,Q3;@Q2) = 0. One possible physics interpretation is to
let f2'NP correspond to v < V fluctuations, where V = p% w,¢,... is a set of vector
mesons, and let f7'FT correspond to perturbative (‘anomalous’) v < qq fluctuations. The
discrete spectrum of vector mesons can be combined with the continuous (in virtuality
k%) spectrum of qq fluctuations, to give

oy 2y _ 47TOéem A% 2 aem 2
[0, = TR0 EDRE /Q

where each component f7V and f799 obeys a unit momentum sum rule.

In sets 1 the Qg scale is picked at a low value, 0.6 GeV, where an identification of the
nonperturbative component with a set of low-lying mesons appear natural, while sets 2
use a higher value, 2 GeV, where the validity of perturbation theory is better established.
The data are not good enough to allow a precise determination of Aqcp. Therefore we
use a fixed value A® = 200 MeV, in agreement with conventional results for proton
distributions. In the VMD component the p° and w have been added coherently, so that
ut:dd =4:1 at Q.

A e gnky) . (46)
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Unlike the p, the « has a direct component where the photon acts as an unresolved
probe. In the definition of Fy this adds a component C7, symbolically

Flo,@)=Yc|fl+f]eCi+ffeC+C7. (47)

Since C7 = 0 in leading order, and since we stay with leading-order fits, it is permissible
to neglect this complication. Numerically, however, it makes a non-negligible difference.
We therefore make two kinds of fits, one DIS type with C7 = 0 and one MS type including
the universal part of C7.

When jet production is studied for real incoming photons, the standard evolution
approach is reasonable also for heavy flavours, i.e. predominantly the c, but with a lower
cut-off Qg = m, for v — c¢. Moving to Deeply Inelastic Scattering, ey — eX, there is
an extra kinematical constraint: W? = Q?(1 — z)/z > 4m?. Tt is here better to use the
‘Bethe-Heitler” cross section for v*y — cc. Therefore each distribution appears in two
variants. For applications to real 4’s the parton distributions are calculated as the sum of
a vector-meson part and an anomalous part including all five flavours. For applications
to DIS, the sum runs over the same vector-meson part, an anomalous part and possibly
a C7 part for the three light flavours, and a Bethe-Heitler part for ¢ and b.

In version 2 of the SaS distributions, which are the ones found here, the extension
from real to virtual photons was improved, and further options made available [Sch96].
The resolved components of the photon are dampened by phenomenologically motivated
virtuality-dependent dipole factors, while the direct ones are explicitly calculable. Thus
eq. (46) generalizes to

2
£ (@,Q* Py = 24”%‘“( my ) Y (2, Q% Q2)

- fE mi, + P?
o @ k2 2\
em 92 / 7,44 2'k2 ) 4

In addition to the introduction of the dipole form factors, note that the lower input scale
for the VMD states is here shifted from Q2 to some Q2 > Q2. This is based on a study
of the evolution equation [Bor93] that shows that the evolution effectively starts ‘later’ in
Q? for a virtual photon. Equation (48) is one possible answer. It depends on both Q2 and
P? in a non-trivial way, however, so that results are only obtained by a time-consuming
numerical integration rather than as a simple parametrization. Therefore several other
alternatives are offered, that are in some sense equivalent, but can be given in simpler
form.

In addition to the SaS sets, PYTHIA also contains the Drees—Grassie set of parton
distributions [Dre85] and, as for the proton, there is an interface to the PDFLIB library
[Plo93]. These calls are made with photon virtuality P? below the hard process scale Q.
Further author-recommended constrains are implemented in the interface to the GRS set
[G1:199] which, along with SaS, is among the few also to define parton distributions of
virtual photons. However, these sets do not allow a subdivision of the photon parton
distributions into one VMD part and one anomalous part. This subdivision is necessary a
sophisticated modelling of vp and ~7 events, see above and section 7.7.2. As an alterna-
tive, for the VMD part alone, the p° parton distribution can be found from the assumed
equality .

0 0 —
f= =50+ (49)
Thus any 7 parton distribution set, from any library, can be turned into a VMD pV set.
The w parton distribution is assumed the same, while the ¢ and J /1 ones are handled in
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the very crude approximation ff val = 171T,-\tal and f¢, = fr'. The VMD part needs to be
complemented by an anomalous part to make up a full photon distribution. The latter is
fully perturbatively calculable, given the lower cut-off scale ()y. The SaS parameterization
of the anomalous part is therefore used throughout for this purpose. The @)y scale can be
set freely in the PARP(15) parameter.

The f;"*"™ distribution can be further decomposed, by the flavour and the p, of
the original branching v — qq. The flavour is distributed according to squared charge
(plus flavour thresholds for heavy flavours) and the p, according to dp? /p? in the range
Qo < p1 < Q. At the branching scale, the photon only consists of a qq pair, with =
distribution oc 2% + (1 — x)%. A component f799(z, Q% k?), characterized by its k ~ p,
and flavour, then is evolved homogeneously from p, to ). For theoretical studies it is
convenient to be able to access a specific component of this kind. Therefore also leading-
order parameterizations of these decomposed distributions are available [Sch95].

7.1.3 Leptons

Contrary to the hadron case, there is no necessity to introduce the parton-distribution
function concept for leptons. A lepton can be considered as a point-like particle, with
initial-state radiation handled by higher-order matrix elements. However, the parton
distribution function approach offers a slightly simplified but very economical description
of initial-state radiation effects for any hard process, also those for which higher-order
corrections are not yet calculated.

Parton distributions for electrons have been introduced in PYTHIA, and are used also
for muons and taus, with a trivial substitution of masses. Alternatively, one is free to
use a simple ‘unresolved’ e, f¢(z,Q*) = §(x — 1), where the e retains the full original
momentum.

Electron parton distributions are calculable entirely from first principles, but different
levels of approximation may be used. The parton-distribution formulae in PYTHIA are
based on a next-to-leading-order exponentiated description, see ref. [Kle89], p. 34. The
approximate behaviour is

Q) = D0 -
3= 207‘:“1 (m% - 1) . (50)

The form is divergent but integrable for x — 1, i.e. the electron likes to keep most of the
energy. To handle the numerical precision problems for x very close to unity, the parton
distribution is set, by hand, to zero for x > 1—1071% and is rescaled upwards in the range
1-107" <2 <1—-10719 in such a way that the total area under the parton distribution
is preserved:

f&(z, Q%) 0<z<1-1077
o 1000572 . B B
(fe(z, @) = % fo(z,@Q?) 1-107T<z<1—10710 (51)
0 r>1-10710

A separate issue is that electron beams may not be monochromatic, more so than for
other particles because of the small electron mass. In storage rings the main mechanism is
synchrotron radiation. For future high-luminosity linear colliders, the beam—beam interac-
tions at the collision vertex may induce a quite significant energy loss — ‘beamstrahlung’.
Note that neither of these are associated with any off-shellness of the electrons, i.e. the
resulting spectrum only depends on x and not Q2. Examples of beamstrahlung spectra
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are provided by the CIRCE program [Ohl97], with a sample interface on the PyTHIA
webpages.

The branchings e — ey, which are responsible for the softening of the f$ parton
distribution, also gives rise to a flow of photons. In photon-induced hard processes, the
J5 parton distribution can be used to describe the equivalent flow of photons. In the next
section, a complete differential photon flux machinery is introduced. Here some simpler
first-order expressions are introduced, for the flux integrated up to a hard interaction scale
Q?. There is some ambiguity in the choice of % range over which emissions should be
included. The naive (default) choice is

Qe 1+ (1 — x)? Q?
5 ” In <W> . (52)

Here it is assumed that only one scale enters the problem, namely that of the hard
interaction, and that the scale of the branching e — ey is bounded from above by the
hard interaction scale. For a pure QCD or pure QED shower this is an appropriate
procedure, cf. section 10.1.3, but in other cases it may not be optimal. In particular, for
photoproduction the alternative that is probably most appropriate is [Ali88]:

Qem 1+ (1 —x)? In ( (1 — x)) . (53)

27 x m2 2

(@, Q%) =

f(@,Q%) =

Here Q2. is a user-defined cut for the range of scattered electron kinematics that is
counted as photoproduction. Note that we now deal with two different Q? scales, one
related to the hard subprocess itself, which appears as the argument of the parton dis-

tribution, and the other related to the scattering of the electron, which is reflected in
2

max*

Also other sources of photons should be mentioned. One is the beamstrahlung pho-
tons mentioned above, where again CIRCE provides sample parameterizations. Another,
particularly interesting one, is laser backscattering, wherein an intense laser pulse is shot
at an incoming high-energy electron bunch. By Compton backscattering this gives rise
to a photon energy spectrum with a peak at a significant fraction of the original electron
energy [Gin82]. Both of these sources produce real photons, which can be considered
as photon beams of variable energy (see subsection 9.8), decoupled from the production
process proper.

In resolved photoproduction or resolved v+ interactions, one has to include the parton
distributions for quarks and gluons inside the photon inside the electron. This is best done
with the machinery of the next section. However, as an older and simpler alternative, fg,
can be obtained by a numerical convolution according to

e @) = [0 e @) R £@2) (54
Y

xT

with f2 as discussed above. The necessity for numerical convolution makes this parton
distribution evaluation rather slow compared with the others; one should therefore only
have it switched on for resolved photoproduction studies.

One can obtain the positron distribution inside an electron, which is also the electron
sea parton distribution, by a convolution of the two branchings e — ey and v — ete™;
the result is [CheT75]

;—(:E,Qz):% {aem (an—2—1>} = <é—x2—éx3+2x(1+x)lnx) . (55)

27 m? r \3 3
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Finally, the program also contains the distribution of a transverse W~ inside an elec-

tron
Feo . Q%) = S Gk (1+Q—) (56)

27T 4 sin®Oy, x my

7.1.4 Equivalent photon flux in leptons

With the ’gamma/lepton’ option of a PYINIT call, an ep or eTe™ event (or corresponding
processes with muons) is factorized into the flux of virtual photons and the subsequent
interactions of such photons. While real photons always are transverse, the virtual photons
also allow a longitudinal component. This corresponds to cross sections

do(ep — eX) = > //dde2 5oy, Q%) do(vfp — X) (57)
£=T,L
and
do(ee — eeX) Z ///dyl dQ7 dys dQ3 £5),(y1, Q) 137 (2, @3) do (75,77, — X) -
§1,82=
(58)

For ep events, this factorized ansatz is perfectly general, so long as azimuthal distributions
in the final state are not studied in detail. In ete™ events, it is not a good approximation
when the virtualities Q2 and Q2% of both photons become of the order of the squared
invariant mass W? of the colliding photons [Sch98]. In this region the cross section
have terms that depend on the relative azimuthal angle of the scattered leptons, and the
transverse and longitudinal polarizations are non-trivially mixed. However, these terms
are of order Q?Q2%/W? and can be neglected whenever at least one of the photons has low
virtuality compared to W?2.
When Q?/W? is small, one can derive [Bon73, Bud75, Sch9§]

I+ (=21 2m?

L@ = o <( e g‘f’), (59)
21—y 1

@) = AN (60)

where [ = e*, p* or 7*. In f] 7, the second term, proportional to mj/Q*, is not leading log

and is therefore often omitted. Clearly it is irrelevant at large )2, but around the lower
cut-off Q2 it significantly dampens the small-y rise of the first term. (Note that Q2.
is y-dependent, so properly the dampening is in a region of the (y, Q?) plane.) Overall,
under realistic conditions, it reduces event rates by 5-10% [Sch98, Fri93].

The y variable is defined as the light-cone fraction the photon takes of the incoming
lepton momentum. For instance, for [T]~ events,

o qik;
Y, = )
kik;

j=2(1) fori=1(2), (61)

where the k; are the incoming lepton four-momenta and the ¢; the four-momenta of the
virtual photons.

Alternatively, the energy fraction the photon takes in the rest frame of the collision
can be used,

qi(k1 + ko)

= " =1,2. 2
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The two are simply related,

2
e (63)

with s = (k1 + k2)?. (Here and in the following formulae we have omitted the lepton and
hadron mass terms when it is not of importance for the argumentation.) Since the Jaco-
bian d(y;, Q?)/d(x;, Q%) = 1, either variable would be an equally valid choice for covering
the phase space. Small z; values will be of less interest for us, since they lead to small
W2 so y;/x; ~ 1 except in the high-Q? tail, and often the two are used interchangeably.

Unless special Q2 cuts are imposed, cross sections obtained with fVT/lL (x,Q?) dx rather

than f,;r/lL (y, Q%) dy differ only at the per mil level. For comparisons with experimental

cuts, it is sometimes relevant to know which of the two is being used in an analysis.
In the ep kinematics, the x and y definitions give that

W?=2s=ys—Q*. (64)

The W? expression for [T]~ is more complicated, especially because of the dependence on
the relative azimuthal angle of the scattered leptons, @12 = @1 — @a:

20202 2 2
W? = xiz98 + Q1Q2—2\/1—x1—%\/I—xQ—%QlQQCoswm

s 5
202
@15 - 2\/1 - yl\/l — y2Q1Q2 cos 12 . (65)

S

= yiyas — QF — Q5+

The lepton scattering angle 6; is related to Q? as

2 2
with m2 = k? = k2 and terms of O(m*) neglected. The kinematical limits thus are
2
2 L 2
i Jmin ™~ i 67
@ain = T (7
(Q?)max ~ (1 - SL’Z')S ) (68>

unless experimental conditions reduce the 6; ranges.

In summary, we will allow the possibility of experimental cuts in the z;, y;, Q?, 0
and W? variables. Within the allowed region, the phase space is Monte Carlo sampled
according to [1;(dQ?/Q?) (dxz;/x;) dyp;, with the remaining flux factors combined with the
cross section factors to give the event weight used for eventual acceptance or rejection.
This cross section in its turn can contain the parton densities of a resolved virtual photon,
thus offering an effective convolution that gives partons inside photons inside electrons.

7.2 Kinematics and Cross Section for a Two-body Process

In this section we begin the description of kinematics selection and cross-section calcula-
tion. The example is for the case of a 2 — 2 process, with final-state masses assumed to
be vanishing. Later on we will expand to finite fixed masses, and to resonances.

Consider two incoming beam particles in their c.m. frame, each with energy Fpeam.
The total squared c.m. energy is then s = 4EZ_ . The two partons that enter the
hard interaction do not carry the total beam momentum, but only fractions x; and x»,
respectively, i.e. they have four-momenta

P11 = Ebeam<x1;0707x1)7
b2 = Ebeam(xQ;ana_fL‘Q)- (69)
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There is no reason to put the incoming partons on the mass shell, i.e. to have time-like
incoming four-vectors, since partons inside a particle are always virtual and thus space-
like. These space-like virtualities are introduced as part of the initial-state parton-shower
description, see section 10.3.3, but do not affect the formalism of this section, wherefore
massless incoming partons is a sensible ansatz. The one example where it would be
appropriate to put a parton on the mass shell is for an incoming lepton beam, but even
here the massless kinematics description is adequate as long as the c.m. energy is correctly
calculated with masses.
The squared invariant mass of the two partons is defined as

5= (m +p2)2 =T1228 . (70)

Instead of x; and x9, it is often customary to use 7 and either y or zg:

T = X1X2 = f, (71)
s
1 T
= -, 72
y TR (72)
Tp = T —Toy . (73)

In addition to x1 and x5, two additional variables are needed to describe the kinematics
of a scattering 142 — 3+ 4. One corresponds to the azimuthal angle ¢ of the scattering
plane around the beam axis. This angle is always isotropically distributed for unpolarized
incoming beam particles, and so need not be considered further. The other variable can

be picked as 6, the polar angle of parton 3 in the c.m. frame of the hard scattering. The
conventional choice is to use the variable

~

P=(p1 = p2)* = (2 — pa)* = (1~ cosf) (74)

with 6 defined as above. In the following, we will make use of both ¢ and 6. Tt is also
customary to define 4,

N s N
U= (pr—pa)’ = (p2—p3)* = —5(1 + cosb) , (75)
but « is not an independent variable since
§+t+a=0. (76)

If the two outgoing particles have masses mgz and my, respectively, then the four-
momenta in the c.m. frame of the hard interaction are given by

. §4+ (m:—m3) Vs . NE -
= +— 0,0, £t— 0 77
p3,4 ( 2\/§ ) 9 534 s, u, 9 534 COS ) ( )

where
m2  m2\> m2 m?2
O34 = \J <1 -2 A4> —4—=—=. (78)
S s s S
Then ¢ and @ are modified to
“ 1 A~
L=~ {(8 = mj —mi) F 3 Bucosb} | (79)
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with X
§+t+a=mi+m]. (80)
The cross section for the process 1 4+ 2 — 3 + 4 may be written as

do

ag = ///d.l’l dl’gthfl(.Tl,Q2) f2<.§l]2,Q2> d£
do

- ///%dydg%ﬁ(%y)mﬁ(m,QQ) i (8

The choice of Q? scale is ambiguous, and several alternatives are available in the
program. For massless outgoing particles the default is the squared transverse momentum

2 _ 2 _ 8 . a5 tu
Q= = Zsinf = =, (52)
which is modified to
1 1 . 1 ti, — m2m?
Q= 5(mig+miy) = S(ms+mi) +p1 = S(ms+mp) + ————  (83)

when masses are introduced in the final state. The mass term is selected such that,

for m3 = my4 = m, the expression reduces to the squared transverse mass, Q* = m? =
m?2+p2 . For cases Wlth spacelike virtual incoming photons, of virtuality Q% = —m? = [p?,
a further generalization to
2 L. 2 2 2 ~2
Q :§<Q1+Q2+m3+m4>+pL (84)

is offered.

The dé/di expresses the differential cross section for a scattering, as a function of the
kinematical quantities §, f and 4. It is in this function that the physics of a given process
resides.

The performance of a machine is measured in terms of its luminosity £, which is
directly proportional to the number of particles in each bunch and to the bunch crossing
frequency, and inversely proportional to the area of the bunches at the collision point.
For a process with a o as given by eq. (81), the differential event rate is given by oL, and
the number of events collected over a given period of time

N:o/[,dt. (85)

The program does not calculate the number of events, but only the integrated cross
sections.

7.3 Resonance Production

The simplest way to produce a resonance is by a 2 — 1 process. If the decay of the
resonance is not considered, the cross-section formula does not depend on ¢, but takes the
form

0= //—dyfﬁfl $17Q2)372f2(372,Q2) a(3) . (86)

Here the physics is contained in the cross section 6(8). The Q? scale is usually taken to

be Q?* = 5.
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In published formulae, cross sections are often given in the zero-width approximation,
i.e. 6(8) < 0(8 —m%), where mp is the mass of the resonance. Introducing the scaled
mass Tg = m%/s, this corresponds to a delta function §(7 — 7x), which can be used to
eliminate the integral over 7.

However, what we normally want to do is replace the § function by the appropriate
Breit-Wigner shape. For a resonance width I'g this is achieved by the replacement

5(T—TR)H£ W;RSR 5T -
m (s7 —m%)2 +mily

(87)

In this formula the resonance width I'g is a constant.

An improved description of resonance shapes is obtained if the width is made s-
dependent (occasionally also referred to as mass-dependent width, since § is not always the
resonance mass), see e.g. [Ber89]. To first approximation, this means that the expression
mgl'g is to be replaced by SI'r/mpg, both in the numerator and the denominator. An
intermediate step is to perform this replacement only in the numerator. This is convenient
when not only s-channel resonance production is simulated but also non-resonance ¢- or
u-channel graphs are involved, since mass-dependent widths in the denominator here may
give an imperfect cancellation of divergences. (More about this below.)

To be more precise, in the program the quantity Hg(s) is introduced, and the Breit—

Wigner is written as

s Hg(sT)

o(r — — — .
(7= 7x) 7 (sT —m%)2 + H3(sT)

(88)

The Hp, factor is evaluated as a sum over all possible final-state channels, Hr = >_ Hg ),
Each decay channel may have its own s dependence, as follows.
A decay to a fermion pair, R — ff, gives no contribution below threshold, i.e. for

§ < 4mZ. Above threshold, Hl(%f ) is proportional to §, multiplied by a threshold factor
B(3 — 3?)/2 for the vector part of a spin 1 resonance, by 3 for the axial vector part,

by (3% for a scalar resonance and by 3 for a pseudoscalar one. Here 3 = /1 —4m?/s.

For the decay into unequal masses, e.g. of the W, corresponding but more complicated
expressions are used.
For decays into a quark pair, a first-order strong correction factor 1 + ag(8)/7 is

included in Hg ). This is the correct choice for all spin 1 colourless resonances, but
is here used for all resonances where no better knowledge is available. Currently the
major exception is top decay, where the factor 1 — 2.5 () /7 is used to approximate loop
corrections [Jez89]. The second-order corrections are often known, but then are specific to
each resonance, and are not included. An option exists for the v/Z°/Z"° resonances, where
threshold effects due to q@ bound-state formation are taken into account in a smeared-out,
average sense, see eq. (137).

For other decay channels, not into fermion pairs, the s dependence is typically more
complicated. An example would be the decay h® — W+W~, with a nontrivial threshold
and a subtle energy dependence above that [Sey95a]. Since a Higgs with my, < 2mwy
could still decay in this channel, it is in fact necessary to perform a two-dimensional
integral over the W# Breit-Wigner mass distributions to obtain the correct result (and
this has to be done numerically, at least in part). Fortunately, a Higgs particle lighter than
2myy is sufficiently narrow that the integral only needs to be performed once and for all
at initialization (whereas most other partial widths are recalculated whenever needed).
Channels that proceed via loops, such as h — gg, also display complicated threshold
behaviours.

The coupling structure within the electroweak sector is usually (re)expressed in terms

97



of gauge boson masses, aem and sin?@yy, i.e. factors of Gy are replaced according to

\/§GF — ‘72“1% . (89)
sin“ Oy msy

Having done that, aey, is allowed to run [Kle89], and is evaluated at the § scale. Thereby

the relevant electroweak loop correction factors are recovered at the myy /my scale. How-

ever, the option exists to go the other way and eliminate a.y, in favour of Gg. Currently

sin?0y, is not allowed to run.

For Higgs particles and technipions, fermion masses enter not only in the kinematics
but also as couplings. The latter kind of quark masses (but not the former, at least not in
the program) are running with the scale of the process, i.e. normally the resonance mass.
The expression used is [Car96]

In(k2m2 /A2 12/(33—2n¢)

In(Q?/A?)

Here mg is the input mass at a reference scale kmg, defined in the MS scheme. Typical
choices are either k = 1 or k£ = 2; the latter would be relevant if the reference scale is
chosen at the QQ threshold. Both A and n¢ are as given in as.

In summary, we see that an § dependence may enter several different ways into the

m(Q?) = mo (

Hg ) expressions from which the total Hy is built up.
When only decays to a specific final state f are considered, the Hg in the denominator
remains the sum over all allowed decay channels, but the numerator only contains the

Hg ) term of the final state considered.

If the combined production and decay process ¢ — R — f is considered, the same s
dependence is implicit in the coupling structure of ¢ — R as one would have had in R — 1,
i.e. to first approximation there is a symmetry between couplings of a resonance to the
initial and to the final state. The cross section ¢ is therefore, in the program, written in
the form . 0

1 A A
E Hp'(8) Hy (8)
§(8§—m%)2+ HE(8)
As a simple example, the cross section for the process e"7, — W~ — p 77, can be written
as

(91)

Girap(3) o

H(i) A H(f) a
5(5) =127 A_WQSL w i) (92)
5 (8 —miy)? + H(3)
where @)
H(i) a :H(f) 3) — M ) 93
ALY (8) ALY (8) 24 Sin29w S ( )

If the effects of several initial and/or final states are studied, it is straightforward to
introduce an appropriate summation in the numerator.

The analogy between the H](%f ) and Hg) cannot be pushed too far, however. The
two differ in several important aspects. Firstly, colour factors appear reversed: the decay
R — qq contains a colour factor No = 3 enhancement, while qq — R is instead suppressed
by a factor 1/No = 1/3. Secondly, the 1 + a4($)/7 first-order correction factor for the
final state has to be replaced by a more complicated K factor for the initial state. This
factor is not known usually, or it is known (to first non-trivial order) but too lengthy to
be included in the program. Thirdly, incoming partons as a rule are space-like. All the
threshold suppression factors of the final-state expressions are therefore irrelevant when

production is considered. In sum, the analogy between ng%f ) and Hg) is mainly useful
as a consistency cross-check, while the two usually are calculated separately. Exceptions
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include the rather messy loop structure involved in gg — h® and h® — gg, which is only
coded once.

It is of some interest to consider the observable resonance shape when the effects of
parton distributions are included. In a hadron collider, to first approximation, parton
distributions tend to have a behaviour roughly like f(x) o< 1/x for small z — this is why
f(z) is replaced by zf(z) in eq. (81). Instead, the basic parton-distribution behaviour
is shifted into the factor of 1/7 in the integration phase space dr/7, cf. eq. (86). When
convoluted with the Breit—Wigner shape, two effects appear. One is that the overall
resonance is tilted: the low-mass tail is enhanced and the high-mass one suppressed. The
other is that an extremely long tail develops on the low-mass side of the resonance: when
T — 0, eq. (91) with Hg(s) o< § gives a 6(8) o< § < 7, which exactly cancels the 1/7
factor mentioned above. Naively, the integral over y, [ dy = —In T, therefore gives a net
logarithmic divergence of the resonance shape when 7 — 0. Clearly, it is then necessary
to consider the shape of the parton distributions in more detail. At not-too-small Q?, the
evolution equations in fact lead to parton distributions more strongly peaked than 1/z,
typically with zf(z) oc 7%3, and therefore a divergence like 7% in the cross-section
expression. Eventually this divergence is regularized by a closing of the phase space,
i.e. that Hg(S) vanishes faster than §, and by a less drastic small-z parton-distribution
behaviour when Q2 ~ § — 0.

The secondary peak at small 7 may give a rather high cross section, which can even
rival that of the ordinary peak around the nominal mass. This is the case, for instance,
with W production. Such a peak has never been observed experimentally, but this is not
surprising, since the background from other processes is overwhelming at low 5. Thus a
lepton of one or a few GeV of transverse momentum is far more likely to come from the
decay of a charm or bottom hadron than from an extremely off-shell W of a mass of a
few GeV. When resonance production is studied, it is therefore important to set limits
on the mass of the resonance, so as to agree with the experimental definition, at least to
first approximation. If not, cross-section information given by the program may be very
confusing.

Another problem is that often the matrix elements really are valid only in the resonance
region. The reason is that one usually includes only the simplest s-channel graph in the
calculation. It is this ‘signal’ graph that has a peak at the position of the resonance, where
it (usually) gives much larger cross sections than the other ‘background’ graphs. Away
from the resonance position, ‘signal’ and ‘background’ may be of comparable order, or
the ‘background’ may even dominate. There is a quantum mechanical interference when
some of the ‘signal” and ‘background’ graphs have the same initial and final state, and this
interference may be destructive or constructive. When the interference is non-negligible,
it is no longer meaningful to speak of a ‘signal’ cross section. As an example, consider the
scattering of longitudinal W’s, W W — W{ W, where the ‘signal’ process is s-channel
exchange of a Higgs. This graph by itself is ill-behaved away from the resonance region.
Destructive interference with ‘background’ graphs such as t-channel exchange of a Higgs
and s- and t-channel exchange of a /7 is required to save unitarity at large energies.

In ete™ colliders, the f¢ parton distribution is peaked at z = 1 rather than at z = 0.
The situation therefore is the opposite, if one considers e.g. Z° production in a machine
running at energies above my: the tail towards lower masses is suppressed and the one
towards higher masses enhanced, with a sharp secondary peak at around the nominal
energy of the machine. Also in this case, an appropriate definition of cross sections
therefore is necessary — with additional complications due to the interference between ~*
and Z°. When other processes are considered, problems of interference with background
appears also here. Numerically the problems may be less pressing, however, since the
secondary peak is occurring in a high-mass region, rather than in a more complicated
low-mass one. Further, in ete™ there is little uncertainty from the shape of the parton
distributions.
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In 2 — 2 processes where a pair of resonances are produced, e.g. ete™ — Z°h°, cross
section are almost always given in the zero-width approximation for the resonances. Here
two substitutions of the type

1 mpgl’
2 2 2 RrLR 2
1:/5(m —mp)dm ﬁ/;(mQ—m%)Qer%F%dm (94)

are used to introduce mass distributions for the two resonance masses, i.e. m3 and m?.
In the formula, mpg is the nominal mass and m the actually selected one. The phase-
space integral over xy, z; and £ in eq. (81) is then extended to involve also m2 and m?.
The effects of the mass-dependent width is only partly taken into account, by replacing
the nominal masses m3 and m3 in the d&/d¢ expression by the actually generated ones

(also e.g. in the relation between f and cos é), while the widths are evaluated at the
nominal masses. This is the equivalent of a simple replacement of mgrl'g by sI'r/mp in
the numerator of eq. (87), but not in the denominator. In addition, the full threshold
dependence of the widths, i.e. the velocity-dependent factors, is not reproduced.

There is no particular reason why the full mass-dependence could not be introduced,
except for the extra work and time consumption needed for each process. In fact, the
matrix elements for several v*/Z° and W production processes do contain the full ex-
pressions. On the other hand, the matrix elements given in the literature are often valid
only when the resonances are almost on the mass shell, since some graphs have been
omitted. As an example, the process qq — € Teu'tr, is dominated by qq — W~ W+
when each of the two lepton pairs is close to mw in mass, but in general also receives
contributions e.g. from qq — Z” — ete™, followed by e — 7, W' and W — pFv,. The
latter contributions are neglected in cross sections given in the zero-width approximation.

Widths may induce gauge invariance problems, in particular when the s-channel graph
interferes with t- or u-channels. Then there may be an imperfect cancellation of contri-
butions at high energies, leading to an incorrect cross section behaviour. The underlying
reason is that a Breit-Wigner corresponds to a resummation of terms of different orders
in coupling constants, and that therefore effectively the s-channel contributions are calcu-
lated to higher orders than the ¢- or u-channel ones, including interference contributions.
A specific example is efe”™ — WTW~, where s-channel v*/Z* exchange interferes with
t-channel v, exchange. In such cases, a fixed width is used in the denominator. One
could also introduce procedures whereby the width is made to vanish completely at high
energies, and theoretically this is the cleanest, but the fixed-width approach appears good
enough in practice.

Another gauge invariance issue is when two particles of the same kind are produced
in a pair, e.g. gg — tt. Matrix elements are then often calculated for one common
my mass, even though in real life the masses ms # my. The proper gauge invariant
procedure to handle this would be to study the full six-fermion state obtained after the
two t — bW — bf;f; decays, but that may be overkill if indeed the t’s are close to
mass shell. Even when only equal-mass matrix elements are available, Breit-Wigners are
therefore used to select two separate masses msz and my. From these two masses, an
average mass T is constructed so that the (334 velocity factor of eq. (78) is retained,
o _mi+mi  (mj—mi)*

2 4s '

/834(§7m27m2) = /834(§7mi2’,7m421) =

(95)

This choice certainly is not unique, but normally should provide a sensible behaviour,
also around threshold. Of course, the differential cross section is no longer guaranteed
to be gauge invariant when gauge bosons are involved, or positive definite. The program
automatically flags the latter situation as unphysical. The approach may well break down
when either or both particles are far away from mass shell. Furthermore, the preliminary
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choice of scattering angle 6 is also retained. Instead of the correct £ and @ of eq. (79),

modified
(m3 —mj)’

45

1

=3 {(§—2m2):|:§534cosé} = (t,0) — (96)

IS

2

can then be obtained. The 72, ¢ and @ are now used in the matrix elements to decide
whether to retain the event or not.

Processes with one final-state resonance and another ordinary final-state product, e.g.
qg — W/, are treated in the same spirit as the 2 — 2 processes with two resonances,
except that only one mass need be selected according to a Breit—Wigner.

7.4 Cross-section Calculations

In the program, the variables used in the generation of a 2 — 2 process are 7, y and

z = cosf. For a 2 — 1 process, the z variable can be integrated out, and need therefore
not be generated as part of the hard process, except when the allowed angular range of
decays is restricted. In unresolved lepton beams, i.e. when f$(z) = d(z — 1), the variables
7 and/or y may be integrated out. We will cover all these special cases towards the end
of the section, and here concentrate on ‘standard’ 2 — 2 and 2 — 1 processes.

7.4.1 The simple two-body processes

In the spirit of section 4.1, we want to select simple functions such that the true 7, y and
z dependence of the cross sections is approximately modelled. In particular, (almost) all
conceivable kinematical peaks should be represented by separate terms in the approximate
formulae. If this can be achieved, the ratio of the correct to the approximate cross sections
will not fluctuate too much, but allow reasonable Monte Carlo efficiency.

Therefore the variables are generated according to the distributions h.(7), hy(y) and
h.(z), where normally

h ( ) C1 1 i Co 1 i C3 1 Cy 1
T T = _ = _ _ .
it Lo Iyr(t+7r) Iy (sT—m%)?2+mil%
G : (97)
Is 7(t+ 1) Zs (sT —m%)2+m%i %
C1 Co C3 1
h - = — Ymin p— max ~ — ’ 98
y(Y) 7, (Y = Ymin) + 7 (y y) + 7, cosh g (98)
c c 1 c 1 c 1 c 1
hao(z2) = =+ =2 + 2 et (99)

i Tha—z ZIsa+z Iy (a—2)?2  Is (a+ 2)?

Here each term is separately integrable, with an invertible primitive function, such that
generation of 7, y and z separately is a standard task, as described in section 4.1. In the
following we describe the details of the scheme, including the meaning of the coefficients
¢; and Z;, which are separate for 7, y and z.

The first variable to be selected is 7. The range of allowed values, Tmin < 7 < Tiax,
is generally constrained by a number of user-defined requirements. A cut on the allowed
mass range is directly reflected in 7, a cut on the p, range indirectly. The first two terms
of h, are intended to represent a smooth 7 dependence, as generally obtained in processes
which do not receive contributions from s-channel resonances. Also s-channel exchange
of essentially massless particles (v, g, light quarks and leptons) are accounted for, since
these do not produce any separate peaks at non-vanishing 7. The last four terms of
h. are there to catch the peaks in the cross section from resonance production. These
terms are only included when needed. Each resonance is represented by two pieces, a first
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to cover the interference with graphs which peak at 7 = 0, plus the variation of parton
distributions, and a second to approximate the Breit—Wigner shape of the resonance itself.
The subscripts R and R’ denote values pertaining to the two resonances, with 7z = m?%/s.
Currently there is only one process where the full structure with two resonances is used,
namely ff — ~*/Z°/7/°. Otherwise either one or no resonance peak is taken into account.

The kinematically allowed range of y values is constrained by 7, |y| < —% In7, and
you may impose additional cuts. Therefore the allowed range Ymin < ¥ < Ymax iS only
constructed after 7 has been selected. The first two terms of h, give a fairly flat y depen-
dence — for processes which are symmetric in y < —y, they will add to give a completely
flat y spectrum between the allowed limits. In principle, the natural subdivision would
have been one term flat in y and one forward—backward asymmetric, i.e. proportional to
y. The latter is disallowed by the requirement of positivity, however. The vy — ymi, and
Ymax — Y terms actually used give the same amount of freedom, but respect positivity.
The third term is peaked at around y = 0, and represents the bias of parton distributions
towards this region.

The allowed z = cosf range is naively —1 < z < 1. However, most cross sections are
divergent for z — =1, so some kind of regularization is necessary. Normally one requires
D1 > Dimin, Which translates into 2% < 1 — 4p? . /(7s) for massless outgoing particles.
Since again the limits depend on 7, the selection of z is done after that of 7. Additional
requirements may constrain the range further. In particular, a p, ., constraint may split
the allowed z range into two, i.e. 2 i < 2 < Z_jax OF Zamin < 2 < Zimax- An un-split
range is represented by z_.c = Zimin = 0. For massless outgoing particles the parameter
a = 1in h., such that the five terms represent a piece flat in angle and pieces peaked as 1/1,
1/, 1/t2, and 1/42, respectively. For non-vanishing masses one has a = 1 + 2m2m?2/3>.
In this case, the full range —1 < z < 1 is therefore available — physically, the standard ¢
and u singularities are regularized by the masses ms and my.

For each of the terms, the Z; coefficients represent the integral over the quantity
multiplying the coefficient ¢;; thus, for instance:

d max
h, : L:/—T:ln<T )

T Tmin

d 1 1

2
T Tmin Tmax

1
y - Il:/(y_ymln)dyzé

hz : Il - /dZ = (Z—max - Z—min) + (Z—i—max - Z—l—min)a
-/ LA <(“ ~ Zzun)(@ = z““m)) . (100)

a—z (@ — z_max)(@ — 2_min)

(ymax - ymin)2 ;

The ¢; coefficients are normalized to unit sum for h;, h, and h, separately. They
have a simple interpretation, as the probability for each of the terms to be used in the
preliminary selection of 7, y and z, respectively. The variation of the cross section over
the allowed phase space is explored in the initialization procedure of a PYTHIA run, and
based on this knowledge the ¢; are optimized so as to give functions h,, h, and h, that
closely follow the general behaviour of the true cross section. For instance, the coefficient
¢4 in h, is to be made larger the more the total cross section is dominated by the region
around the resonance mass.

The phase-space points tested at initialization are put on a grid, with the number of
points in each dimension given by the number of terms in the respective h expression,
and with the position of each point given by the median value of the distribution of one
of the terms. For instance, the dr/7 distribution gives a median point at \/Twnin Tmax, and
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d7 /72 has the median 27 Timax/ (Tmin + Tmax)- Since the allowed y and 2z ranges depend
on the 7 value selected, then so do the median points defined for these two variables.

With only a limited set of phase-space points studied at the initialization, the ‘optimal’
set of coefficients is not uniquely defined. To be on the safe side, 40% of the total weight is
therefore assigned evenly between all allowed ¢;, whereas the remaining 60% are assigned
according to the relative importance surmised, under the constraint that no coefficient is
allowed to receive a negative contribution from this second piece.

After a preliminary choice has been made of 7, y and z, it is necessary to find the
weight of the event, which is to be used to determine whether to keep it or generate
another one. Using the relation dt = § (334, dz/2, eq. (81) may be rewritten as

o = ///%dy%dlefl(xhQ2)552f2(1’2,Q2) i?

_ T z1 f1(z1, Q2) x2 fow2, Q?) 3_2@
= 5/ ) ar [ ) dy [ hale) s pu = SR S T

B34 ) 5 82do
<g 72h(7) hy(y) 2h2(2) 1 fi(z1, Q%) w2 f2(w2, Q7) ?E> :

In the middle line, a factor of 1 = h,/h, has been introduced to rewrite the 7 integral in
terms of a phase space of unit volume: [h,(7)dr = 1 according to the relations above.
Correspondingly for the y and z integrals. In addition, factors of 1 = §/(7s) and 1 = /7
are used to isolate the dimensionless cross section (52/7)dé/dt. The content of the last
line is that, with 7, y and z selected according to the expressions h.(7), h,(y) and h.(z),
respectively, the cross section is obtained as the average of the final expression over all
events. Since the h’s have been picked to give unit volume, there is no need to multiply
by the total phase-space volume.

As can be seen, the cross section for a given Monte Carlo event is given as the product

of four factors, as follows:

1. The 7/s factor, which is common to all events, gives the overall dimensions of the
cross section, in GeV~2. Since the final cross section is given in units of mb, the
conversion factor of 1 GeV~2 = 0.3894 mb is also included here.

2. Next comes the Jacobian, which compensates for the change from the original to
the final phase-space volume.

3. The parton-distribution function weight is obtained by making use of the parton
distribution libraries in PYTHIA or externally. The x; and x5 values are obtained
from 7 and y via the relations x5 = /7 exp(%y).

4. Finally, the dimensionless cross section (§2/7)dé/dt is the quantity that has to be

coded for each process separately, and where the physics content is found.

Of course, the expression in the last line is not strictly necessary to obtain the cross
section by Monte Carlo integration. One could also have used eq. (81) directly, selecting
phase-space points evenly in 7, y and ¢, and averaging over those Monte Carlo weights.
Clearly this would be much simpler, but the price to be paid is that the weights of
individual events could fluctuate wildly. For instance, if the cross section contains a
narrow resonance, the few phase-space points that are generated in the resonance region
obtain large weights, while the rest do not. With our procedure, a resonance would
be included in the h,(7) factor, so that more events would be generated at around the
appropriate T value (owing to the h, numerator in the phase-space expression), but with
these events assigned a lower, more normal weight (owing to the factor 1/h, in the weight
expression). Since the weights fluctuate less, fewer phase-space points need be selected to
get a reasonable cross-section estimate.

In the program, the cross section is obtained as the average over all phase-space points
generated. The events actually handed on to you should have unit weight, however (an

(101)
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option with weighted events exists, but does not represent the mainstream usage). At
initialization, after the ¢; coefficients have been determined, a search inside the allowed
phase-space volume is therefore made to find the maximum of the weight expression in
the last line of eq. (101). In the subsequent generation of events, a selected phase-space
point is then retained with a probability equal to the weight in the point divided by
the maximum weight. Only the retained phase-space points are considered further, and
generated as complete events.

The search for the maximum is begun by evaluating the weight in the same grid of
points as used to determine the ¢; coefficients. The point with highest weight is used as
starting point for a search towards the maximum. In unfortunate cases, the convergence
could be towards a local maximum which is not the global one. To somewhat reduce
this risk, also the grid point with second-highest weight is used for another search. After
initialization, when events are generated, a warning message will be given by default at
any time a phase-space point is selected where the weight is larger than the maximum,
and thereafter the maximum weight is adjusted to reflect the new knowledge. This means
that events generated before this time have a somewhat erroneous distribution in phase
space, but if the maximum violation is rather modest the effects should be negligible. The
estimation of the cross section is not affected by any of these considerations, since the
maximum weight does not enter into eq. (101).

For 2 — 2 processes with identical final-state particles, the symmetrization factor of
1/2 is explicitly included at the end of the dg/dt calculation. In the final cross section,
a factor of 2 is retrieved because of integration over the full phase space (rather than
only half of it). That way, no special provisions are needed in the phase-space integration
machinery.

7.4.2 Resonance production

We have now covered the simple 2 — 2 case. In a 2 — 1 process, the £ integral is absent,
and the differential cross section dé/df is replaced by &(5). The cross section may now
be written as

o = //—dyﬂflfl (1, Q%) w2 fo(2, Q%) 6(3)

2 i G

T 1 s .
= <gm$1fl($17622) $2f2($2>Q2) ;0(5)> . (102)
The structure is thus exactly the same, but the z-related pieces are absent, and the role
of the dimensionless cross section is played by (§/m)a(3).

If the range of allowed decay angles of the resonance is restricted, e.g. by requiring
the decay products to have a minimum transverse momentum, effectively this translates
into constraints on the z = cos# variable of the 2 — 2 process. The difference is that the
angular dependence of a resonance decay is trivial, and that therefore the z-dependent
factor can be easily evaluated. For a spin-0 resonance, which decays isotropically, the
relevant weight is sSimply (2_max—2—min) /24 (Z4max— Z+min) /2. For a transversely polarized
spin-1 resonance the expression is, instead,

3 3 1 1
g(z—max - Z—min) + g(z—i-max - Z—l—min) + g(z—max - Z—min)3 + g(z—i-max - Z+min)3 . (103)
Since the allowed z range could depend on 7 and/or y (it does for a p; cut), the factor
has to be evaluated for each individual phase-space point and included in the expression
of eq. (102).
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For 2 — 2 processes where either of the final-state particles is a resonance, or both, an
additional choice has to be made for each resonance mass, eq. (94). Since the allowed T,
y and z ranges depend on m3 and m3, the selection of masses have to precede the choice
of the other phase-space variables. Just as for the other variables, masses are not selected
uniformly over the allowed range, but are rather distributed according to a function
By (m?) dm?, with a compensating factor 1/h,,(m?) in the Jacobian. The functional form
picked is normally

C1 1 mRFR 1 Cy 1

C2 | C3
By (m?) = = = 203 - 104
(m ) Il ™ (m2 —m%)Q—i—m%F% +1-2 +2—3 m2 +I4 m* ( )

The definition of the Z; integrals is analogous to the one before. The ¢; coefficients are not
found by optimization, but predetermined, normally to ¢; = 0.8, ¢; = ¢35 = 0.1, ¢4, = 0.
Clearly, had the phase space and the cross section been independent of m2 and m3, the
optimal choice would have been to put ¢; = 1 and have all other ¢; vanishing — then the
1/h., factor of the Jacobian would exactly have cancelled the Breit-Wigner of eq. (94)
in the cross section. The second and the third terms are there to cover the possibility
that the cross section does not die away quite as fast as given by the naive Breit-Wigner
shape. In particular, the third term covers the possibility of a secondary peak at small
m?, in a spirit slightly similar to the one discussed for resonance production in 2 — 1
processes.

The fourth term is only used for processes involving v*/Z° production, where the v
propagator guarantees that the cross section does have a significant secondary peak for
m? — 0. Therefore here the choice is ¢; = 0.4, c; = 0.05, ¢5 = 0.3 and ¢4 = 0.25.

A few special tricks have been included to improve efficiency when the allowed mass
range of resonances is constrained by kinematics or by user cuts. For instance, if a pair
of equal or charge-conjugate resonances are produced, such as in efe™ — WHW~ use is
made of the constraint that the lighter of the two has to have a mass smaller than half
the c.m. energy.

7.4.3 Lepton beams

Lepton beams have to be handled slightly differently from what has been described so far.
One also has to distinguish between a lepton for which parton distributions are included
and one which is treated as an unresolved point-like particle. The necessary modifications
are the same for 2 — 2 and 2 — 1 processes, however, since the ¢ degree of freedom is
unaffected.

If one incoming beam is an unresolved lepton, the corresponding parton-distribution
piece collapses to a ¢ function. This function can be used to integrate out the y variable:
dz12—1) =8y £ (1/2)In7). It is therefore only necessary to select the 7 and the z
variables according to the proper distributions, with compensating weight factors, and
only one set of parton distributions has to be evaluated explicitly.

If both incoming beams are unresolved leptons, both the 7 and the y variables are
trivially given: 7 = 1 and y = 0. Parton-distribution weights disappear completely. For
a 2 — 2 process, only the z selection remains to be performed, while a 2 — 1 process is
completely specified, i.e. the cross section is a simple number that only depends on the
c.m. energy.

For a resolved electron, the f$ parton distribution is strongly peaked towards x = 1.
This affects both the 7 and the y distributions, which are not well described by either
of the pieces in h,(7) or h,(y) in processes with interacting e*. (Processes which involve
e.g. the v content of the e are still well simulated, since f£ is peaked at small z.)

If both parton distributions are peaked close to 1, the h,(7) expression in eq. (99)
is therefore increased with one additional term of the form h.(7) o« 1/(1 — 7), with
coefficients ¢; and Z; determined as before. The divergence when 7 — 1 is cut off by our
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regularization procedure for the f¢ parton distribution; therefore we only need consider
T<1-2x10710,

Correspondingly, the h,(y) expression is expanded with a term 1/(1—exp(y—yo)) when
incoming beam number 1 consists of a resolved e*, and with a term 1/(1 —exp(—y — 4o))
when incoming beam number 2 consists of a resolved e*. Both terms are present for
an eTe™ collider, only one for an ep one. The coefficient yo = —(1/2)In7 is the naive
kinematical limit of the y range, |y| < yo. From the definitions of y and y, it is easy
to see that the two terms above correspond to 1/(1 — zy) and 1/(1 — x4), respectively,
and thus are again regularized by our parton-distribution function cut-off. Therefore the
integration ranges are y < yo — 107! for the first term and y > —yo+ 1071Y for the second
one.

7.4.4 Mixing processes

In the cross-section formulae given so far, we have deliberately suppressed a summation
over the allowed incoming flavours. For instance, the process ff — Z° in a hadron collider
receives contributions from u — Z°, dd — Z°, ss — Z°, and so on. These contributions
share the same basic form, but differ in the parton-distribution weights and (usually) in a
few coupling constants in the hard matrix elements. It is therefore convenient to generate
the terms together, as follows:

1. A phase-space point is picked, and all common factors related to this choice are
evaluated, i.e. the Jacobian and the common pieces of the matrix elements (e.g. for
a Z° the basic Breit-Wigner shape, excluding couplings to the initial flavour).

2. The parton-distribution-function library is called to produce all the parton distri-
butions, at the relevant z and Q? values, for the two incoming beams.

3. Aloop is made over the two incoming flavours, one from each beam particle. For each
allowed set of incoming flavours, the full matrix-element expression is constructed,
using the common pieces and the flavour-dependent couplings. This is multiplied
by the common factors and the parton-distribution weights to obtain a cross-section
weight.

4. Each allowed flavour combination is stored as a separate entry in a table, together
with its weight. In addition, a summed weight is calculated.

5. The phase-space point is kept or rejected, according to a comparison of the summed
weight with the maximum weight obtained at initialization. Also the cross-section
Monte Carlo integration is based on the summed weight.

6. If the point is retained, one of the allowed flavour combinations is picked according
to the relative weights stored in the full table.

Generally, the flavours of the final state are either completely specified by those of
the initial state, e.g. as in qg — qg, or completely decoupled from them, e.g. as in
ff — 7% — fF. In neither case need therefore the final-state flavours be specified in the
cross-section calculation. It is only necessary, in the latter case, to include an overall
weight factor, which takes into account the summed contribution of all final states that
are to be simulated. For instance, if only the process Z° — ete™ is studied, the relevant
weight factor is simply T'ee/Iior. Once the kinematics and the incoming flavours have
been selected, the outgoing flavours can be picked according to the appropriate relative
probabilities.

In some processes, such as gg — gg, several different colour flows are allowed, each
with its own kinematical dependence of the matrix-element weight, see section 8.2.1. Each
colour flow is then given as a separate entry in the table mentioned above, i.e. in total an
entry is characterized by the two incoming flavours, a colour-flow index, and the weight.
For an accepted phase-space point, the colour flow is selected in the same way as the
incoming flavours.
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The program can also allow the mixed generation of two or more completely different
processes, such as ff — Z° and qq — gg. In that case, each process is initialized separately,
with its own set of coefficients ¢; and so on. The maxima obtained for the individual cross
sections are all expressed in the same units, even when the dimensionality of the phase
space is different. (This is because we always transform to a phase space of unit volume,
Jh.(7)dT =1, etc.) The above generation scheme need therefore only be generalized as
follows:

1. One process is selected among the allowed ones, with a relative probability given by

the maximum weight for this process.

2. A phase-space point is found, using the distributions h.(7) and so on, optimized for

this particular process.

3. The total weight for the phase-space point is evaluated, again with Jacobians, matrix

elements and allowed incoming flavour combinations that are specific to the process.

4. The point is retained with a probability given by the ratio of the actual to the

maximum weight of the process. If the point is rejected, one has to go back to step
1 and pick a new process.
5. Once a phase-space point has been accepted, flavours may be selected, and the event
generated in full.
It is clear why this works: although phase-space points are selected among the allowed
processes according to relative probabilities given by the maximum weights, the probabil-
ity that a point is accepted is proportional to the ratio of actual to maximum weight. In
total, the probability for a given process to be retained is therefore only proportional to
the average of the actual weights, and any dependence on the maximum weight is gone.

In ~vp and ~~ physics, the different components of the photon give different final states,
see section 7.7.2. Technically, this introduces a further level of administration, since each
event class contains a set of (partly overlapping) processes. From an ideological point of
view, however, it just represents one more choice to be made, that of event class, before
the selection of process in step 1 above. When a weighting fails, both class and process
have to be picked anew.

7.5 Three- and Four-body Processes

The PYTHIA machinery to handle 2 — 1 and 2 — 2 processes is fairly sophisticated and
generic. The same cannot be said about the generation of hard scattering processes with
more than two final-state particles. The number of phase-space variables is larger, and it
is therefore more difficult to find and transform away all possible peaks in the cross section
by a suitably biased choice of phase-space points. In addition, matrix-element expressions
for 2 — 3 processes are typically fairly lengthy. Therefore PYTHIA only contains a very
limited number of 2 — 3 and 2 — 4 processes, and almost each process is a special case of
its own. It is therefore less interesting to discuss details, and we only give a very generic
overview.

If the Higgs mass is not light, interactions among longitudinal W and Z gauge bosons
are of interest. In the program, 2 — 1 processes such as W{ Wy — h® and 2 — 2
ones such as W W; — Z97Z? are included. The former are for use when the h° still is
reasonably narrow, such that a resonance description is applicable, while the latter are
intended for high energies, where different contributions have to be added up. Since the
program does not contain Wy, or Zy, distributions inside hadrons, the basic hard scattering
has to be convoluted with the ¢ — q'Wy, and q — qZ, branchings, to yield effective 2 — 3
and 2 — 4 processes. However, it is possible to integrate out the scattering angles of the
quarks analytically, as well as one energy-sharing variable [Cha85]. Only after an event
has been accepted are these other kinematical variables selected. This involves further
choices of random variables, according to a separate selection loop.
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In total, it is therefore only necessary to introduce one additional variable in the basic
phase-space selection, which is chosen to be §', the squared invariant mass of the full
2 — 3 or 2 — 4 process, while s is used for the squared invariant mass of the inner
2 — 1 or 2 — 2 process. The y variable is coupled to the full process, since parton-
distribution weights have to be given for the original quarks at z; 9 = V1" exp (£y). The

t variable is related to the inner process, and thus not needed for the 2 — 3 processes.
The selection of the 7/ = §/s variable is done after 7, but before y has been chosen. To

improve the efficiency, the selection is made according to a weighted phase space of the
form [ h.(7")d7r’, where

il e (1—1/7)3 c3 1

ho(r)y=2 27T -
(™) I17’+I2 T2 +Zg7"(1—7")’

(105)
in conventional notation. The ¢; coefficients are optimized at initialization. The c3 term,
peaked at 7’ = 1, is only used for eTe™ collisions. The choice of h,s is roughly matched
to the longitudinal gauge-boson flux factor, which is of the form

T T T
For a light h the effective W approximation above breaks down, and it is necessary
to include the full structure of the qq' — qq'h® (i.e. ZZ fusion) and qq' — ¢"q”h® (i.e.
WW fusion) matrix elements. The 7/, 7 and y variables are here retained, and selected
according to standard procedures. The Higgs mass is represented by the 7 choice; normally

the h? is so narrow that the 7 distribution effectively collapses to a ¢ function. In addition,
the three-body final-state phase space is rewritten as

51 Ay 1 2 dy dy

- 2 4 (4) — — — 2 3 2 4
(g (27T)3 2Ei> ( 7T) 0 (p3 +Pa+ps —p1 pz) (27r)5 4 /—)\L34 dpi; o dpiy o dys ,
(107)

where A\ 34 = (m? 5, —m?%;—m3,)?—4m? ;m? . The outgoing quarks are labelled 3 and 4,
and the outgoing Higgs 5. The ¢ angles are selected isotropically, while the two transverse
momenta are picked, with some foreknowledge of the shape of the W/Z propagators in
the cross sections, according to h, (p%)dp?, where

2 C1 Co 1 C3 1
hJ_(pJ_> Il 1-2 m%-l—pi +1-3 (m%—i-pi)Q ) (108)
with mgr the W or Z mass, depending on process, and ¢; = ¢c; = 0.05, ¢3 = 0.9. Within
the limits given by the other variable choices, the rapidity ys is chosen uniformly. A final
choice remains to be made, which comes from a twofold ambiguity of exchanging the
longitudinal momenta of partons 3 and 4 (with minor modifications if they are massive).
Here the relative weight can be obtained exactly from the form of the matrix element
itself.

7.6 Resonance Decays

Resonances (see section 2.1.2) can be made to decay in two different routines. One
is the standard decay treatment (in PYDECY) that can be used for any unstable particle,
where decay channels are chosen according to fixed probabilities, and decay angles usually
are picked isotropically in the rest frame of the resonance, see section 13.3. The more
sophisticated treatment (in PYRESD) is the default one for resonances produced in PYTHIA,
and is described here. The ground rule is that everything in mass up to and including b
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hadrons is decayed with the simpler PYDECY routine, while heavier particles are handled
with PYRESD. This also includes the v*/Z° even though here the mass in principle could
be below the b threshold. Other resonances include, e.g., t, W%, h°, 720, W= HO A0
H*, and technicolor and supersymmetric particles.

7.6.1 The decay scheme

In the beginning of the decay treatment, either one or two resonances may be present,
the former represented by processes such as q@ — WT and qg — W'/, the latter by
qq — WHTW~. If the latter is the case, the decay of the two resonances is considered in
parallel (unlike PYDECY, where one particle at a time is made to decay).

First the decay channel of each resonance is selected according to the relative weights

Hg ), as described above, evaluated at the actual mass of the resonance, rather than at
the nominal one. Threshold factors are therefore fully taken into account, with channels
automatically switched off below the threshold. Normally the masses of the decay prod-
ucts are well-defined, but e.g. in decays like h® — WHW~ it is also necessary to select
the decay product masses. This is done according to two Breit—Wigners of the type in
eq. (94), multiplied by the threshold factor, which depends on both masses.

Next the decay angles of the resonance are selected isotropically in its rest frame.
Normally the full range of decay angles is available, but in 2 — 1 processes the decay
angles of the original resonance may be restrained by user cuts, e.g. on the p, of the decay
products. Based on the angles, the four-momenta of the decay products are constructed
and boosted to the correct frame. As a rule, matrix elements are given with quark and
lepton masses assumed vanishing. Therefore the four-momentum vectors constructed at
this stage are actually massless for all quarks and leptons.

The matrix elements may now be evaluated. For a process such as qq — WTW~ —
e vep~ 7, the matrix element is a function of the four-momenta of the two incoming
fermions and of the four outgoing ones. An upper limit for the event weight can be
constructed from the cross section for the basic process qq — WTW™, as already used to
select the two W momenta. If the weighting fails, new resonance decay angles are picked
and the procedure is iterated until acceptance.

Based on the accepted set of angles, the correct decay product four-momenta are con-
structed, including previously neglected fermion masses. Quarks and, optionally, leptons
are allowed to radiate, using the standard final-state showering machinery, with maximum
virtuality given by the resonance mass.

In some decays new resonances are produced, and these are then subsequently allowed
to decay. Normally only one resonance pair is considered at a time, with the possibility of
full correlations. In a few cases triplets can also appear, but such configurations currently
are considered without inclusion of correlations. Also note that, in a process like qq —
Z°h° — ZOW*+W~ — 6 fermions, the spinless nature of the h® ensures that the W* decays
are decoupled from that of the Z° (but not from each other).

7.6.2 Cross-section considerations

The cross section for a process which involves the production of one or several resonances
is always reduced to take into account channels not allowed by user flags. This is trivial
for a single s-channel resonance, cf. eq. (91), but can also be included approximately if
several layers of resonance decays are involved. At initialization, the ratio between the
user-allowed width and the nominally possible one is evaluated and stored, starting from
the lightest resonances and moving upwards. As an example, one first finds the reduction
factors for W* and for W~ decays, which need not be the same if e.g. W is allowed to
decay only to quarks and W~ only to leptons. These factors enter together as a weight
for the h® — WTW~ channel, which is thus reduced in importance compared with other
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possible Higgs decay channels. This is also reflected in the weight factor of the h° itself,
where some channels are open in full, others completely closed, and finally some (like the
one above) open but with reduced weight. Finally, the weight for the process qq — Z°h°
is evaluated as the product of the Z° weight factor and the h® one. The standard cross
section of the process is multiplied with this weight.

Since the restriction on allowed decay modes is already included in the hard process
cross section, mixing of different event types is greatly simplified, and the selection of decay
channel chains is straightforward. There is a price to be paid, however. The reduction
factors evaluated at initialization all refer to resonances at their nominal masses. For
instance, the W reduction factor is evaluated at the nominal W mass, even when that
factor is used, later on, in the description of the decay of a 120 GeV Higgs, where at least
one W would be produced below this mass. We know of no case where this approximation
has any serious consequences, however.

The weighting procedure works because the number of resonances to be produced,
directly or in subsequent decays, can be derived recursively already from the start. It
does not work for particles which could also be produced at later stages, such as the
parton-shower evolution and the fragmentation. For instance, D mesons can be produced
fairly late in the event generation chain, in unknown numbers, and so weights could not
be introduced to compensate, e.g. for the forcing of decays only into 77K™.

One should note that this reduction factor is separate from the description of the
resonance shape itself, where the full width of the resonance has to be used. This width
is based on the sum of all possible decay modes, not just the simulated ones. PYTHIA
does allow the possibility to change also the underlying physics scenario, e.g. to include
the decay of a Z° into a fourth-generation neutrino.

Normally the evaluation of the reduction factors is straightforward. However, for
decays into a pair of equal or charge-conjugate resonances, such as Z°Z° or WTW~ it is
possible to pick combinations in such a way that the weight of the pair does not factorize
into a product of the weight of each resonance itself. To be precise, any decay channel
can be given seven different status codes:

—1: a non-existent decay mode, completely switched off and of no concern to us;

. an existing decay channel, which is switched off;

a channel which is switched on;

a channel switched on for particles, but off for antiparticles;

a channel switched on for antiparticles, but off for particles;

a channel switched on for one of the particles or antiparticles, but not for both;

5: a channel switched on for the other of the particles or antiparticles, but not for
both.

The meaning of possibilities 4 and 5 is exemplified by the statement ‘in a WTW™ pair,

one W decays hadronically and the other leptonically’, which thus covers the cases where

either Wt or W~ decays hadronically.

Neglecting non-existing channels, each channel belongs to either of the classes above.
If we denote the total branching ratio into channels of type ¢ by r;, this then translates
into the requirement ro+r; + 1o+ 173 +1r4+ 175 = 1. For a single particle the weight factor
is 1 + 79 4 r4, and for a single antiparticle r; 4+ r3+ r4. For a pair of identical resonances,
the joint weight is instead

o 00 0 0 0 0
Ll ul

(r1+72)” +2(r1 + 72) (ra + 15) + 2rars (109)
and for a resonance—antiresonance pair
(7’1 + 7’2)(7’1 + T3) + (2T1 + 1o + T3)<T4 + T5) + 2T47’5 . (110)

If some channels come with a reduced weight because of restrictions on subsequent decay
chains, this may be described in terms of properly reduced r;, so that the sum is less than
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unity. For instance, in a tt — bW bW~ process, the W decay modes may be restricted
to Wt — qq and W~ — e 1, in which case (3> 1) ~ 2/3 and (3> 7;)f =~ 1/9. With index
+ denoting resonance/antiresonance, eq. (110) then generalizes to

(ri+r)t(ri+rs)” +(ri+r) (ra+rs)” +(ra+rs) (ro+r3)” +rfrs +rdry . (111)

7.7 Nonperturbative Processes

A few processes are not covered by the discussion so far. These are the ones that depend
on the details of hadronic wave functions, and therefore are not strictly calculable pertur-
batively (although perturbation theory may often provide some guidance). What we have
primarily in mind is elastic scattering, diffractive scattering and low-p; ‘minimum-bias’
events in hadron—hadron collisions, but one can also find corresponding processes in yp
and v interactions. The description of these processes is rather differently structured
from that of the other ones, as is explained below. Models for ‘minimum-bias’ events
are discussed in detail in section 11.2, to which we refer for details on this part of the
program.

7.7.1 Hadron—hadron interactions

In hadron-hadron interactions, the total hadronic cross section for AB — anything, o/Z
is calculated using the parameterization of Donnachie and Landshoff [Don92]. In this
approach, each cross section appears as the sum of one pomeron term and one reggeon
one

oitB(s) = XAB s 4 yAB s (112)

where s = E%,. The powers ¢ = 0.0808 and = 0.4525 are expected to be universal,
whereas the coefficients X 45 and Y45 are specific to each initial state. (In fact, the high-
energy behaviour given by the pomeron term is expected to be the same for particle and

antiparticle interactions, i.e. X4B = X4B)) Parameterizations not provided in [Don92]
have been calculated in the same spirit, making use of quark counting rules [Sch93al.
The total cross section is subdivided according to

Tiot (8) = 047 () + 0alx ) (8) + 0liCax) (s) + 0dd (5) + ond (5) - (113)

Here ‘el’ is the elastic process AB — AB, ‘sd(XB)’ the single diffractive AB — X B,
‘sd(AX)’ the single diffractive AB — AX, ‘dd’ the double diffractive AB — X; X5, and
‘nd’” the non-diffractive ones. Higher diffractive topologies, such as central diffraction, are
currently neglected. In the following, the elastic and diffractive cross sections and event
characteristics are described, as given in the model by Schuler and Sjostrand [Sch94,
Sch93a]. The non-diffractive component is identified with the ‘minimum bias’ physics
already mentioned, a practical but not unambiguous choice. Its cross section is given by
‘whatever is left’ according to eq. (113), and its properties are discussed in section 11.2.

At not too large squared momentum transfers ¢, the elastic cross section can be ap-
proximated by a simple exponential fall-off. If one neglects the small real part of the cross
section, the optical theorem then gives

dog B 01;201;
dt 167

exp(Bat) , (114)

and oq = 02, /167 B,. The elastic slope parameter is parameterized by

Bo = B4B(s) = 2ba + 2bp + 45 — 4.2, (115)
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with s given in units of GeV and By in GeV~2. The constants bapare b, = 2.3, by s =
1.4, by = 0.23. The increase of the slope parameter with c.m. energy is faster than
the logarithmically one conventionally assumed; that way the ratio oe /0t remains well-
behaved at large energies.

The diffractive cross sections are given by

das S 1
%]\'})2() - .]g_]élp BAIP ﬁBIP M2 eXp(BSd(XB) )Fsd )
doy 1
%])\22(5) B 517(331}’ Biw Bop 77 WE exp(Bsaax)t) Fua
dadd("s) 93]P 1 1
T dM2ZdAE — Byqt) Fyq . 116

The couplings Bap are related to the pomeron term X“s¢ of the total cross section
parameterization, eq. (112). Picking a reference scale /s, = 20 GeV, the couplings are
given by BapfBap = X4Ps ref The triple-pomeron coupling is determined from single-
diffractive data to be gsp ~ 0.318 mb'/?; within the context of the formulae in this
section.

The spectrum of diffractive masses M is taken to begin 0.28 GeV x 2m, above the
mass of the respective incoming particle and extend to the kinematical limit. The simple
dM?/M? form is modified by the mass-dependence in the diffractive slopes and in the Fiy
and Fyq factors (see below).

The slope parameters are assumed to be

S
Bsd(XB)<3) = 2b3+204 1H(M2),

S
Bsd(AX)<5) = 2bA+20é ln(MQ) s

de<8) = 20/11’1 (6 +M28](\)42> . (117)

Here o/ = 0.25 GeV~2 and conventionally sq is picked as so = 1/a’. The term e in Byq is
added by hand to avoid a breakdown of the standard expression for large values of M7 M.
The ba p terms protect By from breaking down; however a minimum value of 2 GeV 2
is still explicitly required for Byy, which comes into play e.g. for a J/¢ state (as part of a
VMD photon beam).

The kinematical range in ¢ depends on all the masses of the problem. In terms of
the scaled variables pu; = m?%/s, po = m%/s, uz = M(Ql)/s (= m?%/s when A scatters

elastically), puq = My /s (= m}/s when B scatters elastically), and the combinations
Cv = 1= (4 po+ ps + pa) + (o1 — pi2) (s — pa)
Cy = \/(1 — pn — pi2)? — Ao \/(1 — pi3 — pa)? — dpzpg
Cs = (ps— pa)(pa — p2) + (b1 + pra — p2 — pi) (s — papis) (118)

one has t, < t < tpax With

tmin - _g(cl+02)a

s s 4C s2C:
7fmax = __(Cl - CZ) = -3 > - > .
2 2 Cl + C(2 tmin
The Regge formulae above for single- and double-diffractive events are supposed to
hold in certain asymptotic regions of the total phase space. Of course, there will be

(119)
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diffraction also outside these restrictive regions. Lacking a theory which predicts differen-
tial cross sections at arbitrary ¢ and M? values, the Regge formulae are used everywhere,
but fudge factors are introduced in order to obtain ‘sensible’ behaviour in the full phase
space. These factors are:

M? Cres M2
Fqg = |1—— 1+—="1,
! ( s><+Mfes+M2>
(M1+M2)2 smg
Faa = (11— 2 2 172
s smg + Mi Mj

1+ Cres MrQes 1+ CreSMrQes (120)
M2, + M? M2, +M3)

res res

X

The first factor in either expression suppresses production close to the kinematical limit.
The second factor in Fj; suppresses configurations where the two diffractive systems
overlap in rapidity space. The final factors give an enhancement of the low-mass region,
where a resonance structure is observed in the data. Clearly a more detailed modelling
would have to be based on a set of exclusive states rather than on this smeared-out
averaging procedure. A reasonable fit to pp/Pp data is obtained for ¢, = 2 and M,es =
2 GeV, for an arbitrary particle A which is diffractively excited we use M2 = m —m, +
2 GeV.

The diffractive cross-section formulae above have been integrated for a set of c.m.
energies, starting at 10 GeV, and the results have been parameterized. The form of
these parameterizations is given in ref. [Sch94], with explicit numbers for the pp/pp case.
PyTHIA also contains similar parameterizations for 7mp (assumed to be same as pp and
wp), ¢p, J/¥p, pp (77 ete.), pd, pJ /v, o6, ¢pJ /1 and J /] /4.

The processes above do not obey the ordinary event mixing strategy. First of all, since
their total cross sections are known, it is possible to pick the appropriate process from the
start, and then remain with that choice. In other words, if the selection of kinematical
variables fails, one would not go back and pick a new process, the way it was done in
section 7.4.4. Second, it is not possible to impose any cuts or restrain allowed incoming
or outgoing flavours: if not additional information were to be provided, it would make
the whole scenario ill-defined. Third, it is not recommended to mix generation of these
processes with that of any of the other ones: normally the other processes have so small
cross sections that they would almost never be generated anyway. (We here exclude the
cases of ‘underlying events’ and ‘pile-up events’, where mixing is provided for, and even
is a central part of the formalism, see sections 11.2 and 11.4.)

Once the cross-section parameterizations has been used to pick one of the processes,
the variables t and M are selected according to the formulae given above.

A p® formed by v — p° in elastic or diffractive scattering is polarized, and therefore
its decay angular distribution in p® — 77~ is taken to be proportional to sin®, where
the reference axis is given by the p° direction of motion.

A light diffractive system, with a mass less than 1 GeV above the mass of the in-
coming particle, is allowed to decay isotropically into a two-body state. Single-resonance
diffractive states, such as a AT, are therefore not explicitly generated, but are assumed
described in an average, smeared-out sense.

A more massive diffractive system is subsequently treated as a string with the quantum
numbers of the original hadron. Since the exact nature of the pomeron exchanged between
the hadrons is unknown, two alternatives are included. In the first, the pomeron is
assumed to couple to (valence) quarks, so that the string is stretched directly between the
struck quark and the remnant diquark (antiquark) of the diffractive state. In the second,
the interaction is rather with a gluon, giving rise to a ‘hairpin’ configuration in which the
string is stretched from a quark to a gluon and then back to a diquark (antiquark). Both
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of these scenarios could be present in the data; the default choice is to mix them in equal
proportions.

There is experimental support for more complicated scenarios [Ing85], wherein the
pomeron has a partonic substructure, which e.g. can lead to high-p, jet production in
the diffractive system. The full machinery, wherein a pomeron spectrum is convoluted
with a pomeron-proton hard interaction, is not available in PyTHIA. (But is found in the
PoMPYT program [Bru96].)

7.7.2 Photoproduction and ~vy physics

The photon physics machinery in PYTHIA has been largely expanded in recent years.
Historically, the model was first developed for photoproduction, i.e. a real photon on
a hadron target [Sch93, Sch93a]. Thereafter v physics was added in the same spirit
[Sch94a, Sch97]. Only recently also virtual photons have been added to the description
[Fri00], including the nontrivial transition region between real photons and Deeply Inelas-
tic Scattering (DIS). In this section we partly trace this evolution towards more complex
configurations.

The total vp and ~v cross sections can again be parameterized in a form like eq. (112),
which is not so obvious since the photon has more complicated structure than an ordinary
hadron. In fact, the structure is still not so well understood. The model we outline is the
one studied by Schuler and Sjostrand [Sch93, Sch93a], and further updated in [Fri00]. In
this model the physical photon is represented by

W =VZsl) + S i|v>+zé|qq>+zi|e+f->. (121)

V=pOw,p,J /1 fV l=e,p,T fze

By virtue of this superposition, one is led to a model of vp interactions, where three

different kinds of events may be distinguished:

e Direct events, wherein the bare photon |yg) interacts directly with a parton from
the proton. The process is perturbatively calculable, and no parton distributions
of the photon are involved. The typical event structure is two high-p, jets and a
proton remnant, while the photon does not leave behind any remnant.

e VMD events, in which the photon fluctuates into a vector meson, predominantly a
pY. All the event classes known from ordinary hadron-hadron interactions may thus
occur here, such as elastic, diffractive, low-p; and high-p, events. For the latter,
one may define (VMD) parton distributions of the photon, and the photon also
leaves behind a beam remnant. This remnant is smeared in transverse momentum
by a typical ‘primordial k,’ of a few hundred MeV.

e Anomalous or GVMD (Generalized VMD) events, in which the photon fluctuates
into a qq pair of larger virtuality than in the VMD class. The initial parton distri-
bution is perturbatively calculable, as is the subsequent QCD evolution. It gives rise
to the so-called anomalous part of the parton distributions of the photon, whence
one name for the class. As long as only real photons were considered, it made sense
to define the cross section of this event class to be completely perturbatively calcu-
lable, given some lower p; cut-off. Thus only high-p, events could occur. However,
alternatively, one may view these states as excited higher resonances (p’ etc.), thus
the GVMD name. In this case one is lead to a picture which also allows a low-p |
cross section, uncalculable in perturbation theory. The reality may well interpo-
late between these two extreme alternatives, but the current framework more leans
towards the latter point of view. Either the q or the q plays the role of a beam
remnant, but this remnant has a larger p; than in the VMD case, related to the
virtuality of the v « qq fluctuation.

The |¢t/~) states can only interact strongly with partons inside the hadron at higher
orders, and can therefore be neglected in the study of hadronic final states.
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In order that the above classification is smooth and free of double counting, one
has to introduce scales that separate the three components. The main one is kg, which
separates the low-mass vector meson region from the high-mass |qq) one, ko =~ mg/2 ~ 0.5
GeV. Given this dividing line to VMD states, the anomalous parton distributions are
perturbatively calculable. The total cross section of a state is not, however, since this
involves aspects of soft physics and eikonalization of jet rates. Therefore an ansatz is
chosen where the total cross section of a state scales like k% /k?, where the adjustable
parameter ky =~ m,/2 for light quarks. The k, scale is roughly equated with half the
mass of the GVMD state. The spectrum of GVMD states is taken to extend over a range
ko < ki < ky, where k; is identified with the p,yin(s) cut-off of the perturbative jet
spectrum in hadronic interactions, p min(s) &= 1.5 GeV at typical energies, see section
11.2 and especially eq. (206). Above that range, the states are assumed to be sufficiently
weakly interacting that no eikonalization procedure is required, so that cross sections can
be calculated perturbatively without any recourse to pomeron phenomenology. There is
some arbitrariness in that choice, and some simplifications are required in order to obtain
a manageable description.

The VMD and GVMD/anomalous events are together called resolved ones. In terms
of high-p, jet production, the VMD and anomalous contributions can be combined into
a total resolved one, and the same for parton-distribution functions. However, the two
classes differ in the structure of the underlying event and possibly in the appearance of
soft, processes.

In terms of cross sections, eq. (121) corresponds to

Tior(5) = 0air(s) + oviin(8) + oiom(s) - (122)

The direct cross section is, to lowest order, the perturbative cross section for the two
processes vq — qg and vg — (q, with a lower cut-off p; > ki, in order to avoid double-
counting with the interactions of the GVMD states. Properly speaking, this should be
multiplied by the Z3 coefficient,

2 2 2
N T
’ v=p0§¢g/¢ (f % ; Jaa g:ez,w fee (123)

but normally Z3 is so close to unity as to make no difference.

The VMD factor (e/ fy)? = 47 aem/ f2 gives the probability for the transition vy — V.
The coefficients fZ /4w are determined from data to be (with a non-negligible amount of
uncertainty) 2.20 for p%; 23.6 for w, 18.4 for ¢ and 11.5 for J/¢. Together these numbers
imply that the photon can be found in a VMD state about 0.4% of the time, dominated
by the p° contribution. All the properties of the VMD interactions can be obtained by
appropriately scaling down Vp physics predictions. Thus the whole machinery developed
in the previous section for hadron—hadron interactions is directly applicable. Also parton
distributions of the VMD component inside the photon are obtained by suitable rescaling.

The contribution from the ‘anomalous’ high-mass fluctuations to the total cross section
is obtained by a convolution of the fluctuation rate

2
e a ki dk2
— ] =212 2 —L 124
Z(ﬁm) 2 ( ?Q) k3 (124)

q ko

which is to be multiplied by the abovementioned reduction factor k% /k% for the total
cross section, and all scaled by the assumed real vector meson cross section.

As an illustration of this scenario, the phase space of yp events may be represented
by a (k.,p.) plane. Two transverse momentum scales are distinguished: the photon res-
olution scale k, and the hard interaction scale p,. Here k, is a measure of the virtuality
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of a fluctuation of the photon and p, corresponds to the most virtual rung of the ladder,
possibly apart from k;. As we have discussed above, the low-k; region corresponds to
VMD and GVMD states that encompasses both perturbative high-p,; and nonperturba-
tive low-p, interactions. Above ki, the region is split along the line k;, = p,. When
p1 > k) the photon is resolved by the hard interaction, as described by the anomalous
part of the photon distribution function. This is as in the GVMD sector, except that we
should (probably) not worry about multiple parton—parton interactions. In the comple-
mentary region k; > p,, the p, scale is just part of the traditional evolution of the parton
distributions of the proton up to the scale of k£, , and thus there is no need to introduce an
internal structure of the photon. One could imagine the direct class of events as extending
below k; and there being the low-p, part of the GVMD class, only appearing when a hard
interaction at a larger p, scale would not preempt it. This possibility is implicit in the
standard cross section framework.

In 7 physics [Sch94a, Sch97], the superposition in eq. (121) applies separately for
each of the two incoming photons. In total there are therefore 3 x 3 = 9 combinations.
However, trivial symmetry reduces this to six distinct classes, written in terms of the total
cross section (cf. eq. (122)) as

Tiot(8) = Odixain($) + oVMDxvMD (8) + 0&MDxGVMD(5)
+ 204ivp(8) + 204 avmp (8) + 20V upxavmn(s) - (125)

A parameterization of the total 7 cross section is found in [Sch94a, Sch97].

The six different kinds of vy events are thus:

e The direct xdirect events, which correspond to the subprocess vy — qq (or £7¢7).
The typical event structure is two high-p, jets and no beam remnants.

e The VMDxVMD events, which have the same properties as the VMD ~p events.
There are four by four combinations of the two incoming vector mesons, with one
VMD factor for each meson.

e The GVMDxGVMD events, wherein each photon fluctuates into a qq pair of larger
virtuality than in the VMD class. The ‘anomalous’ classification assumes that one
parton of each pair gives a beam remnant, whereas the other (or a daughter par-
ton thereof) participates in a high-p, scattering. The GVMD concept implies the
presence also of low-p, events, like for VMD.

e The direct xVMD events, which have the same properties as the direct yp events.

e The direct xGVMD events, in which a bare photon interacts with a parton from
the anomalous photon. The typical structure is then two high-p, jets and a beam
remnant.

e The VMDxGVMD events, which have the same properties as the GVMD ~p events.

Like for photoproduction events, this can be illustrated in a parameter space, but now
three-dimensional, with axes given by the k1, k1o and p, scales. Here each k; is a
measure of the virtuality of a fluctuation of a photon, and p, corresponds to the most
virtual rung on the ladder between the two photons, possibly excepting the endpoint
k. ; ones. So, to first approximation, the coordinates along the k,; axes determine the
characters of the interacting photons while p, determines the character of the interaction
process. Double counting should be avoided by trying to impose a consistent classification.
Thus, for instance, p; > k;; with k11 < kg and kg < k1o < ki gives a hard interaction
between a VMD and a GVMD photon, while k7 > p, > ko with k1 > Kk and k5 <
ko is a single-resolved process (directxVMD; with p, now in the parton distribution
evolution).

In much of the literature, where a coarser classification is used, our directxdirect is
called direct, our directx VMD and directxGVMD is called single-resolved since they
both involve one resolved photon which gives a beam remnant, and the rest are called
double-resolved since both photons are resolved and give beam remnants.
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If the photon is virtual, it has a reduced probability to fluctuate into a vector meson
state, and this state has a reduced interaction probability. This can be modelled by a
traditional dipole factor (m3,/(m? +@?))? for a photon of virtuality Q?, where my — 2k
for a GVMD state. Putting it all together, the cross section of the GVMD sector of
photoproduction then scales like

//@@@ K2 \? (126)
o k2R \4k2 v Q)

For a virtual photon the DIS process v*q — q is also possible, but by gauge invariance
its cross section must vanish in the limit Q% — 0. At large Q?, the direct processes can
be considered as the O(ag) correction to the lowest-order DIS process, but the direct
ones survive for Q> — 0. There is no unique prescription for a proper combination at
all Q?, but we have attempted an approach that gives the proper limits and minimizes
double-counting. For large %, the DIS +*p cross section is proportional to the structure
function Fy(x, Q?) with the Bjorken x = Q*/(Q*+ W?). Since normal parton distribution
parameterizations are frozen below some () scale and therefore do not obey the gauge
invariance condition, an ad hoc factor (Q*/(Q* + mf)))2 is introduced for the conversion

from the parameterized Fy(z,Q?) to a op:

Y*p QQ 4 em 4 2 emQ2 _
ops <Q2 © m?)) WQOZ Fy(z, Q) = (C;jé_w zq:ez {xq(;@Q?) + xq(x7Q2)} )
(127)

Here m, is some nonperturbative hadronic mass parameter, for snnph(nty 1dent1ﬁed W1th
the p mass. One of the Q?/(Q? + m ) factors is required already to give finite o} for
conventional parton distributions, and could be viewed as a screening of the individual
partons at small Q?. The second factor is chosen to give not only a finite but actually a
vanishing UDIS for Q?> — 0 in order to retain the pure photoproduction description there.
This latter factor thus is more a matter of convenience, and other approaches could have
been pursued.
In order to avoid double-counting between DIS and direct events, a requirement p, >
max(kp, @) is imposed on direct events. In the remaining DIS ones, denoted lowest order

(LS)) DIS, thus p, < @. This would suggest a subdivision 0P = bR — o)., with
o given by eq. (127) and Jd1rect by the perturbative matrix elements. In the limit
Q? — 0, the DIS cross section is now constructed to vanish while the direct is not, so this

would give JEEPDIS < 0. However, here we expect the correct answer not to be a negative
number but an exponentially suppressed one, by a Sudakov form factor. This modifies
the cross section:

o P
oTors = o5~ ol — o e %) (125)
UDIS
Since we here are in a region where the DIS cross section is no longer the dominant one,
this change of the total DIS cross section is not essential.

The overall picture, from a DIS perspective, now requires three scales to be kept
track of. The traditional DIS region is the strongly ordered one, Q* > k% > p?, where
DGLAP-style evolution [Alt77, Gri72] is responsible for the event structure. As always,
ideology wants strong ordering, while the actual classification is based on ordinary ordering
Q? > k* > p2. The region k2 > max(Q? p?) is also DIS, but of the O(ay) direct kind.
The region where k£ is the smallest scale corresponds to non-ordered emissions, that then
go beyond DGLAP validity, while the region p3 > k% > @Q? cover the interactions of a
resolved virtual photon. Comparing with the plane of real photoproduction, we conclude
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that the whole region p; > k; involves no double-counting, since we have made no
attempt at a non-DGLAP DIS description but can choose to cover this region entirely by
the VMD/GVMD descriptions. Actually, it is only in the corner p; < k; < min(k;, Q)
that an overlap can occur between the resolved and the DIS descriptions. Some further
considerations show that usually either of the two is strongly suppressed in this region,
except in the range of intermediate Q? and rather small W2, Typically, this is the region
where r ~ Q?/(Q* + W?) is not close to zero, and where F; is dominated by the valence-
quark contribution. The latter behaves roughly o (1 — x)™, with an n of the order of 3
or 4. Therefore we will introduce a corresponding damping factor to the VMD/GVMD
terms.
In total, we have now arrived at our ansatz for all Q*:

Y'p W2 n
* * a3 * * *
Y'P P direct P Y'p P
Otott = OpIs ©XP <_ O_'y*p ) + O direct + (QQ + W2> (UVMD + JGVMD) ’ (129>
DIS

with four main components. Most of these in their turn have a complicated internal
structure, as we have seen.

Turning to v*y* processes, finally, the parameter space is now five-dimensional: @1,
@2, k11, k1o and p,. As before, an effort is made to avoid double-counting, by having
a unique classification of each region in the five-dimensional space. Remaining double-
counting is dealt with as above. In total, our ansatz for v*v* interactions at all ? contains
13 components: 9 when two VMD, GVMD or direct photons interact, as is already allowed
for real photons, plus a further 4 where a ‘DIS photon’ from either side interacts with a
VMD or GVMD one. With the label resolved used to denote VMD and GVMD, one can
write

vy
* oK O 3 * N K
eyt 2 2 2 _ Y*y dir xres Y*y
Otot (W 7@17 QQ) = ODISxres €XP <_ O.’Y*’Y* t Odirxres
DIS xres
Jv*v*
yEy* resxdir yEy*
1 OresxpIs €XP | — v+ t Oresxdir (130>
OresxDIS
) 3
irxdir 2 2 2 resxres
Qi +Q5+W

Most of the 13 components in their turn have a complicated internal structure, as we have
seen.

An important note is that the Q? dependence of the DIS and direct photon interactions
is implemented in the matrix element expressions, i.e. in processes such as v*v* — qq or
v*q — qg the photon virtuality explicitly enters. This is different from VMD/GVMD,
where dipole factors are used to reduce the total cross sections and the assumed flux of
partons inside a virtual photon relative to those of a real one, but the matrix elements
themselves contain no dependence on the virtuality either of the partons or of the photon
itself. Typically results are obtained with the SaS 1D parton distributions for the virtual
transverse photons [Sch95, Sch96], since these are well matched to our framework, e.g.
allowing a separation of the VMD and GVMD /anomalous components. Parton distribu-
tions of virtual longitudinal photons are by default given by some Q?-dependent factor
times the transverse ones. The new set by Chyla [Chy00] allows more precise modelling
here, but first indications are that many studies will not be sensitive to the detailed shape.

The photon physics machinery is of considerable complexity, and so the above is only
a brief summary. Further details can be found in the literature quoted above. Some topics
are also covered in other places in this manual, e.g. the flux of transverse and longitudinal
photons in subsection 7.1.4, scale choices for parton density evaluation in subsection 7.2,
and further aspects of the generation machinery and switches in subsection 8.3.
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8 Physics Processes

In this section we enumerate the physics processes that are available in PYTHIA, introduc-
ing the ISUB code that can be used to select desired processes. A number of comments
are made about the physics scenarios involved, in particular with respect to underly-
ing assumptions and domain of validity. The section closes with a survey of interesting
processes by machine.

8.1 The Process Classification Scheme

A wide selection of fundamental 2 — 1 and 2 — 2 tree processes of the Standard Model
(electroweak and strong) has been included in PYTHIA, and slots are provided for many
more, not yet implemented. In addition, ‘minimum-bias’-type processes (like elastic scat-
tering), loop graphs, box graphs, 2 — 3 tree graphs and many non-Standard Model
processes are included. The classification is not always unique. A process that proceeds
only via an s-channel state is classified as a 2 — 1 process (e.g. qq — 7*/Z° — eTe™),
but a 2 — 2 cross section may well have contributions from s-channel diagrams (gg — gg
obtains contributions from gg — g* — gg). Also, in the program, 2 — 1 and 2 — 2
graphs may sometimes be convoluted with two 1 — 2 splittings to form effective 2 — 3
or 2 — 4 processes (WTW~ — h' is folded with ¢ — q"W* and ¢ — "W~ to give
qq/ N q//q///h0>.

The original classification and numbering scheme feels less relevant today than when
originally conceived. In those days, the calculation of 2 — 3 or 2 — 4 matrix elements was
sufficiently complicated that one would wish to avoid it if at all possible, e.g. by having in
mind to define effective parton densities for all standard model particles, such as the W=.
Today, the improved computational techniques and increased computing power implies
that people would be willing to include a branching ¢ — qW as part of the hard process,
i.e. not try to factor it off in some approximation. With the large top mass and large Higgs
mass limits, there is also a natural subdivision, such that the b quark is the heaviest object
for which the parton distribution concept makes sense. Therefore most of the prepared
but empty slots are likely to remain empty, or be reclaimed for other processes.

It is possible to select a combination of subprocesses to simulate, and also afterwards
to know which subprocess was actually selected in each event. For this purpose, all
subprocesses are numbered according to an ISUB code. The list of possible codes is given
in Tables 17, 18, 19, 20, 21, 22, 23 and 24. Only processes marked with a ‘+’ sign in the
first column have been implemented in the program to date. Although ISUB codes were
originally designed in a logical fashion, we must admit that subsequent developments of
the program have tended to obscure the structure. For instance, the process numbers for
Higgs production are spread out, in part as a consequence of the original classification, in
part because further production mechanisms have been added one at a time, in whatever
free slots could be found. At some future date the subprocess list will therefore be re-
organized. In the thematic descriptions that follow the main tables, the processes of
interest are repeated in a more logical order. If you want to look for a specific process, it
will be easier to find it there.

In the following, f; represents a fundamental fermion of flavour ¢, i.e. d, u, s, ¢, b, t,
bt e, Ve, 0=, vy, 7, v, T or ;. A corresponding antifermion is denoted by f;. In
several cases, some classes of fermions are explicitly excluded, since they do not couple
to the g or v (no eTe™ — gg, e.g.). When processes have only been included for quarks,
while leptons might also have been possible, the notation q; is used. A lepton is denoted
by /; in a few cases neutrinos are also lumped under this heading. In processes where
fermion masses are explicitly included in the matrix elements, an F or Q is used to denote
an arbitrary fermion or quark. Flavours appearing already in the initial state are denoted
by indices ¢ and 7, whereas new flavours in the final state are denoted by k and (.
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Table 17: Subprocess codes, part 1. First column is ‘4’ for processes implemented
and blank for those that are only foreseen. Second is the subprocess number ISUB,
and third the description of the process. The final column gives references from
which the cross sections have been obtained. See text for further information.

In | No. | Subprocess Reference
+ 1| ff; —~/2Z° [Eic84]
+ | 2|8 — W [Eics4]
+ 3| ffi —h° [Eic84]
4| yWT — W+
+| 5]2z020 -1 [Eic84, Chas5)]
6| Z°WH — W+
7| WrwW- — 70
+ 8| WrW— — h [Eic84, Cha85]
+ | 10| if; — fif; (QFD) | [Ing87a]
+ | 11 | fif; — £if; (QCD) | [Com77, Ben84, Eic84]
+ | 12| fif; — fi.f [Com77, Ben84, Eic84]
+ | 13| fif; — gg [Com77, Ben8&4]
+ | 14| ff; — gy [Hal78, Ben84]
+ | 15 | f;f; — gZ® [Eic84]
+ | 16| fif; — gW+ [Eic84]
17 | £,f; — gh?
+ | 18 | fif; — vy [Ber84]
+ | 19| fif; — ~4Z° [Eic84]
+ | 20| fif; = AWT [Eic84, Sam91]
21 | f;f; — ~h°
+ | 22 ff, — 7970 [Eic84, Gung6]
+ | 23| £ — zoW+ [Eic84, Guns6]
+ | 24| f;f; — Z°h° [Ber85]
+ | 25| fif; — WTW~— [Bar94, Gun86]
+ | 26| fif; — WTh? [Eic84]
27 | £f; — hoh°
+ | 28| fig—fig [Com77, Ben84]
+ | 29| fig — iy [Hal78, Ben84]
+ | 30| fig — £;Z° [Eic84]
+ | 31| fig— W+ [Eic84]
+ | 32| fe — 1O
+ | 33| fiy—fig [Duk82]
+ | 34|ty -ty [Duk82]
+ | 35| fiy — £Z° [Gab86|
+ | 36| fiy = fL,WH [Gab86]
37 | f;y — £;h°
38 | £;,72° — f;g
39 | £,70 — £y
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Table 18: Subprocess codes, part 2. Comments as before.

In

No.

Subprocess

Reference

+ 4+ + + +

—

40
41
42
43
44
45
46
47
48
49
20
o1
o2
23
o4
25
26
57
o8
29
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80

£,7° — £;7°

£,72° — W+

f,7° — f;h?

Wt — fg

W' — fy

fiWJr — kaO

;W — fLW+

f,W+ — f;h°

fh0 — f;g

£h0 — £y

f;ho — £,7°

fho — LW+

f;h — £;h°

gg — fify

g7 — fify

gZO — fkfk

gW+ — fi.f;

ghO — fkfk

vy — fkfli

’}/ZO — fkfk

’7W+ — fkfl

vh? — f.f

ZOZO — fkfk

7OWt — f,f,

Zoho — fkfk

WHW— — fi.f,

W+Hh? — f.f,

hoho - fkfk‘

g8 — &8

vy — WHW-

YW — ZOW+

Z°7° — 7°7° (longitudinal)
Z°7° — WTW~ (longitudinal)
Z°W+ — Z°WT (longitudinal)
Z%h® — 7°n°

WHW™ — ~y

WHW~ — Z°Z° (longitudinal)
WHW* — WHW= (longitudinal)
W+Hh? — W+h

h%h® — hoh°

QY — Qkﬂi

[Com77, Ben&4|
[Duk82]

[Bar90]

(Ben87h)
[Dun86, Bar90a]

[Bag82]

121




Table 19: Subprocess codes, part 3. Comments as before

In | No. | Subprocess Reference
+ | 81| £f; — Q.Q, [ComT79)
+ | 82| gg — Q:Q, [Com79)]
+ &3 qifj — Qkfl [DiC86]
+ | 84| gy — QuQ, [Fon81]
+ | 85| vy — FiFy [Bar90]
+ | 86 |gg— J/ug [Bai83]
+ | 87| gg — xocg [Gas87]
+ | 83| gg — x1c8 [Gas87]
+ | 89| gg — x2c8g [Gas87]
+ | 91 | elastic scattering [Sch94]
+ | 92| single diffraction (AB — X B) | [Sch94]
+ | 93| single diffraction (AB — AX) | [Sch94]
+ | 94 | double diffraction [Sch94]
+ | 95| low-p, production [Sjo87al
+ | 96 | semihard QCD 2 — 2 [Sjo87al
+ | 99| va—q

101 | gg — Z°
+ 1102 | gg — h° [Eic84]
+ | 103 | vy — h° [Dreg9]
+ | 104 | gg — Xoc [Bai83]
+ | 105 | gg — Yac [Bai83]
+ | 106 | gg — J/1¢y [Dre91]
+ | 107 | gv — J/9Yg [Ber81]
+ | 108 | vy — J/uy [Jun97]
+ | 110 | f;f; — yh° [Ber85a]
4111 | £F — gn® [E1SS)]
+ [ 112 | fig — £ [E11S8]
+ | 113 | gg — gh® [E1188]
+ | 114 | gg — vy [ConT1, Ber84, Dic88]
+ | 115 | gg — g [ConT1, Ber84, Dic88]

116 | gg — ~Z°

117 | gg — 7°7°

118 | gg — WHW-

119 | vy — gg
+ | 121 | gg — QrQ,h° [Kun&4]
+ 1122 | q;q; — QrQ,h° [Kun8&4]
+ | 123 | §;f; — £;£;h° (ZZ fusion) [Cah84]
+ | 124 | £if; — §5h° (WTW™ fusion) | [Cah84]
+ | 131 | £y — fig [ALt78]
4132 | fyr — L ALt7]
+ | 133 | fiyg — fiy [AIt78]
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Table 20: Subprocess codes, part 4. Comments as before.

In | No. | Subprocess Reference
+ | 134 | £y — iy [Alt78]

+ | 135 | gy — f,f; [ALt78]

+ 136 | gy — £, ALt78]

+ | 137 | yiyh — £if; [Bai81]

+ | 138 | ying — fif; [Bai81]

+ | 139 | yiyh — £f; [Bai81]

4| 140 | 4y — £ [Bais1]

+ | 141 | £if; — v/2°/2"° [A1t89]
4142 | £, — W [A1£89]

+ | 143 | £;f; — H* [Gun&7]
+ | 144 | £if; = R [Ben85al
+ | 145 | qi¢; — Lqg [Wud86]
+ | 146 | ey — €e* [Bau90]
+ | 147 | dg — d* [Bau90)]
+ | 148 | ug — u* [Bau90]
+ | 149 | gg — nic [Eic84, App92]
+ | 151 | f;f;, — HO [Eic84]

+ | 152 | gg — H° [Eic84]

+ | 153 | vy — HY [Dreg9)

+ | 156 | f;f; — A° [Eic84]

+ | 157 | gg — A [Eic84]

+ | 158 | vy — AY [Dreg9)

+ | 161 | f;g — f,H [Bar88|

+ | 162 | qig — lLq [Hew88|
+ | 163 | gg — LqoLq [Hew88, Eic84]
+ | 164 | q;g; — LqLqg [HewS88]
+ | 165 | f;f; — fiufy (via v*/Z°) [Eic84, Lan91]
+ | 166 | f;f; — fi,.f; (via W) [Eic84, Lan91]
+ | 167 | q;q; — qxd* [Bau90]
+ | 168 | q;q; — qxu* [Bau90]
+ | 169 | q;q; — ete T [Bau90)]
+ [ 171 | £F, — Z°H° [Eic84]

+ | 172 | f;f; — WTH? [Eic84]

+ | 173 | £if; — §f;HY (ZZ fusion) [Cah84]
+ | 174 | §f; — GHH® (WTW™ fusion) | [Cah84]
+ | 176 | f;f; — Z°A" [Eic84]

+ [ 177 | £F; — WHAO [Eic84]

+ | 178 | ;f; — £,f;A° (ZZ fusion) [Cah84]
+ | 179 | £if; — §HA° (WHW™ fusion) | [Cah84]
+ [ 181 | gg — QrQ,H° [Kun8&4]
+ 1182 | qiq; — QrQ,H° [Kun84]
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Table 21: Subprocess codes, part 5. Comments as before.

In | No. | Subprocess Reference
183 | f;f; — gH° E1I88]
184 | f;,g — £;H° E1I8S]
185 | gg — gH° E1I88]
186 | gg — QrQ,A° Kung4]
187 | qiq; — QrQ,AY Kun8&4|
188 | fif; — gA° E1I88]
189 | f;g — f;A° E1I88]
190 | gg — gA” E1I88]
191 | f,f; — P2 Eic96]
192 | £f; — pi Eic96]
193 | f;f; — W Eic96]

194 | ;f; — £,

195 fifj — fif,

201 | £, — &,8;

202 | ff; — épéh,

203 | £;f; — 6,85 + &hég
204 | £f; — iy,

205 | £, — firfif;

206 fz’fi — QLR + AL AR
207 | £f; — 77

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
|
208 | f;f; — 77 [Bar87, Daw85)|
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

209 | £f; — AT + T T Bar87]
210 | £, — CLip + Ciiy Daw85]
211 | £f; — Aor + i, Daw85]
212 | £if; — RHi,* + 750, | [Daw85)]

213 | £:f; — i}
214 | £;f; — 0. 0F

e S il s o i S S e e i i s i s s ot Sl S S S

216 | £;f; — v1xa Bar86a]
217 | £,f; — YaXo Bar86a)]
218 | f;f; — X3X3 Bar86a]
219 | f;f; — YaXa Bar86a)]
220 | £;f; — X1 X2 Bar86a]
221 | £;f; — X1X3 Bar86a]
222 | f;f; — X1 X4 Bar86a]
223 | £;f; — YaX3 Bar86a]
224 | f;f; — YaXa Bar86a]
225 | f;f; — X3Xa Bar86a]
226 | f;f; — XixXT Bar86b]
227 | £, = o XF Bar86b]
228 | ff; — X xd Bar86b]
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Table 22: Subprocess codes, part 6. Comments as before.

In | No. | Subprocess Reference

+ | 229 | £if; — VXt [Bar86a, Bar86b]
+ | 230 | £:f; — XXt [Bar86a, Bar86b]
+ | 231 | £if; — XaxXg [Bar86a, Bar86b]
+ | 232 | £if; — vaXs [Bar86a, Bar86b]
+ | 233 | £if; — Xe [Bar86a, Bar86b]
+ | 234 | £if; — XoXs [Bar86a, Bar86b]
+ | 235 | £:f; — XaXe [Bar86a, Bar86b]
+ | 236 | fif; — YaXs [Bar86a, Bar86b]
+ 1237 | fif; — gxa [Daw85]

+ 1238 | fif; — &% [Daw85]

+ 1239 | fif; — gx3 [Daw85]

+ | 240 | £if; — gx4 [Daw85]

+ | 241 | £f; — gxX7 [Daw85]

+ | 242 | £f; — gX5 [Daw85]

+ | 243 | £,f; — g8 [Daw85]

+ | 244 | gg — gg [Daw85]

+ | 246 | f;,g — Qi X1 [Daw85]

+ | 247 | f,g — Qirx1 [Daw85]

+ | 248 | ;g — Qi X2 [Daw85]

+ | 249 | fig — AirX2 [Daw85]

+ 1250 | fig — qinXs [Daw85]

+ | 251 | f;g¢ — QirXs [Daw85]

+ 1252 | fig — QirXa [Daw85]

+ | 253 | fig — AirXa [Daw85]

+ | 254 | fig — QXT [Daw85]

+ | 256 | fig — qNE [Daw85]

+ | 258 | fig — ;.8 [Daw85]

+ | 259 | f;g — QiRE [Daw85]

+ | 261 | ff; — tt [Daw85]

+ | 262 | f,f; — tot} [Daw85]

+ [ 263 | fifi — B85 + £t [Daw85]

+ | 264 | gg — tlt1 [Daw85]

+ | 265 | gg — tot3 [Daw85]

+ | 271 | £f; — Girq5z [Daw85]

+ | 272 | §f; — Qird;r [Daw85]

+ | 273 | £f; — Qirdjr + Qirdjz | [Dawsh)

+ | 274 | £if; — Q.G L [Daw85]

+ 1275 | fif; — @ RO R [Daw85]

+ | 276 | £f; — Q@R + Aird L | [Daw85]

+ | 277 | 65 — @8 [Daw85]
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Table 23: Subprocess codes, part 7. Comments as before.

In | No. | Subprocess Reference
278 | £if; — QR R [Daw85]
279 | gg — QLA L [Daw85]
280 | 88 — Gird; R [Daw85]

281 | bq — b1qz (q not b)
282 | bq — badp

283 | bq — biqr + b2qs,
284 | bq — bk

285 | bq — bk

286 | b — b1 + b}
287 | £,f; — byb?

288 | £;f; — bob3

289 | gg — bybt

290 | gg — byb3

291 | bb — byb,

292 | bb — byby

293 | bb — by by

294 | bg — b§

295 | bg — bog

296 | bb — byb% + bib,
297 | £,f; — H*hO

298 | f,f; — HEHO

299 | f,f; — Ah°

300 | £;f; — AHOC

301 | £f, —» HYH-

e i e el i i i e S e i i el i e =

341 | 44, — HE*: [Hui97]
342 | 6it; — HES [Hui97]
343 | by — Hi%eT [Hui97]
344 | ;v — HiteT [Hui97]
345 | by — HEEpu® [Hui97]
346 |y — HEEuT [Hui97]
347 | 6y — HEErT [Hui97]
348 | Ly — HEETT [Hui97]
349 | £f; — HyTH~ [Hui97]
350 | ff; — HETHE™ [Hui97]
351 | f,f; — f, fiHF= (WW) fusion) | [Hui97]
352 | fif; — fp filH5T (WW) fusion) | [Hui97]
353 | f;f; — 7% [Eic84]
354 | f;f;, — W [Eic84]
361 | £f;, — Wi Wp [Lan99
362 | f;f; — Winy [Lan99]
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Table 24: Subprocess codes, part 8. Comments as before.

In | No. | Subprocess Reference
363 | fif; — mhime Lan99]
364 | f;f; — yw0 Lan99]
365 | f,f; — '), Lan99]
366 | f;f; — 772, Lan99]
367 | £,f; — 2072 Lan99)]
368 | f,f; — Wr Lan99]
370 | fif; — WiZ? Lan99]
371 | £if; — Wirl, Lan99]
372 | £if; — 7z Lan99)]
373 | £if; — mEml, Lan99]
374 | £if; — i Lan99]
375 | fif; — 7207 Lan99]
376 | f;f; — WErl, Lan99]

]

381 | q;q; — q;q; (QCD+TC)
382 | q;q; — qd (QCD+4TC)

e i el s i e s

[
[
[
[
[
[
[
[
[
[
[
%
377 | £f; — W', [Lan99
[
[
[
[
[
[
[
[
[
[
[
[
[

383 | q;q; — gg (QCD+TC) Lan02a)]
384 | fig — fig (QCD+TC) Lan02a)]
385 | gg — qxq (QCD+TC) Lan02a]
386 | gg — gg (QCD+TCQC) Lan02a)]
387 | it — QiQy (QCD+TC) | [Lan02al
388 | gg — QxQ; (QCD+TC) | [Lan02a]
301 | f — G Ran99)]
392 | gg — G~ Ran99)
393 | qq — gG* Ran99, Bij01]
394 | qg — qG* Ran99, Bij01]
395 | gg — gG* Ran99, Bij01]

In supersymmetric processes, antiparticles of sfermions are denoted by *, i.e. t* rather

than the more correct but cumbersome t or t.

Charge-conjugate channels are always assumed included as well (where separate), and
processes involving a W™ also imply those involving a W~. Wherever Z° is written, it is
understood that v* and */Z° interference should be included as well (with possibilities
to switch off either, if so desired). In some cases this is not fully implemented, see further
below. Correspondingly, Z° denotes the complete set v*/Z°/Z° (or some subset of it).
Thus the notation ~ is only used for a photon on the mass shell.

In the last column of the tables below, references are given to works from which
formulae have been taken. Sometimes these references are to the original works on the
subject, sometimes only to the place where the formulae are given in the most convenient
or accessible form, or where chance lead us. Apologies to all matrix-element calculators
who are not mentioned. However, remember that this is not a review article on physics
processes, but only a way for readers to know what is actually found in the program, for
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better or worse. In several instances, errata have been obtained from the authors. Often
the formulae given in the literature have been generalized to include trivial radiative
corrections, Breit—~Wigner line shapes with s-dependent widths (see section 7.3), etc.

The following sections contain some useful comments on the processes included in the
program, grouped by physics interest rather than sequentially by ISUB or MSEL code (see
9.2 for further information on the MSEL code). The different ISUB and MSEL codes that can
be used to simulate the different groups are given. ISUB codes within brackets indicate
the kind of processes that indirectly involve the given physics topic, although only as part
of a larger whole. Some obvious examples, such as the possibility to produce jets in just
about any process, are not spelled out in detail.

The text at times contains information on which special switches or parameters are of
particular interest to a given process. All these switches are described in detail in sections
9.3 9.4 and 9.5, but are alluded to here so as to provide a more complete picture of the
possibilities available for the different subprocesses. However, the list of possibilities is
certainly not exhausted by the text below.

8.2 QCD Processes

Obviously most processes in PYTHIA contain QCD physics one way or another, so the
above title should not be overstressed. One example: a process like ete™ — v*/Z% — qq
is also traditionally called a QCD event, but is here book-kept as v*/Z° production. In
this section we discuss scatterings between coloured partons, plus a few processes that
are close relatives to other processes of this kind.

8.2.1 QCD jets

MSEL =1, 2
ISUB = 11 q;q; — q;q;
12 qiT; — aky

13 «q; — g8
28 ;g — Qg
53 g8 — kT
68 gg — gg

96 semihard QCD 2 — 2

No higher-order processes are explicitly included, nor any higher-order loop corrections
to the 2 — 2 processes. However, by initial- and final-state QCD radiation, multijet events
are being generated, starting from the above processes. The shower rate of multijet
production is clearly uncertain by some amount, especially for well-separated jets.

A string-based fragmentation scheme such as the Lund model needs cross sections for
the different colour flows; these have been calculated in [Ben84] and differ from the usual
calculations by interference terms of the order 1/NZ. By default, the standard colour-
summed QCD expressions for the differential cross sections are used. In this case, the
interference terms are distributed among the various colour flows according to the pole
structure of the terms. However, the interference terms can be excluded, by changing
MSTP (34)

As an example, consider subprocess 28, qg — qg. The total cross section for this
process, obtained by summing and squaring the Feynman $-, ¢-, and @-channel graphs, is

[ComT77]
P Il I (AR (131)
£2 9\a 3 '
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(An overall factor ma?/5? is ignored.) Using the identity of the Mandelstam variables for
the massless case, § +t 4+ u = 0, this can be rewritten as

24+42 4(s5 4

— |+ . 132
12 9 \u + S (132)

On the other hand, the cross sections for the two possible colour flows of this subprocess
are [Ben84]
A 1 27%—2 — 3 ;
9 23

. At s (133)

- alETa)

Colour configuration A is one in which the original colour of the q annihilates with the
anticolour of the g, the g colour flows through, and a new colour—anticolour is created
between the final q and g. In colour configuration B, the gluon anticolour flows through,
but the q and g colours are interchanged. Note that these two colour configurations have
different kinematics dependence. For MSTP(34)=0, these are the cross sections actually
used.

The sum of the A and B contributions is

8A2 ~2 4 (3 o
S ——<f+3> . (134)

9 {2 9\t s

The difference between this expression and that of [Com77], corresponding to the inter-
ference between the two colour-flow configurations, is then

1582+ a2
-2 = 135
9 ¢ 7 (135)
which can be naturally divided between colour flows A and B:
142
A . —
942’
142
B: ——=. 136
9 ¢2 (136)

For MSTP(34)=1, the standard QCD matrix element is therefore used, with the same
relative importance of the two colour configurations as above. Similar procedures are
followed also for the other QQCD subprocesses.

All the matrix elements in this group are for massless quarks (although final-state
quarks are of course put on the mass shell). As a consequence, cross sections are divergent
for p; — 0, and some kind of regularization is required. Normally you are expected to
set the desired p i, value in CKIN(3).

The new flavour produced in the annihilation processes (ISUB = 12 and 53) is deter-
mined by the flavours allowed for gluon splitting into quark—antiquark; see switch MDME.

Subprocess 96 is special among all the ones in the program. In terms of the basic
cross section, it is equivalent to the sum of the other ones, i.e. 11, 12, 13, 28, 53 and 68.
The phase space is mapped differently, however, and allows p, as input variable. This
is especially useful in the context of the multiple interactions machinery, see subsection
11.2, where potential scatterings are considered in order of decreasing p,, with a form
factor related to the probability of not having another scattering with a p, larger than
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the considered one. You are not expected to access process 96 yourself. Instead it is
automatically initialized and used either if process 95 is included or if multiple interactions
are switched on. The process will then appear in the maximization information output,
but not in the cross section table at the end of a run. Instead, the hardest scattering
generated within the context of process 95 is reclassified as an event of the 11, 12, 13, 28,
53 or 68 kinds, based on the relative cross section for these in the point chosen. Further
multiple interactions, subsequent to the hardest one, also do not show up in cross section
tables.

8.2.2 Heavy flavours
MSEL =4, 5,6, 7,8

ISUB— 81 qa, — Qu,
82 gg — QrQy
(83)  aif; — Qifi
(84) gy — QeQy
(85) vy — FiFy
(1) ff, — fy*/ZO — F.Fg
(2) fzfj - VVJr - FkFl
(142) fifj — Wt = F.F,

The matrix elements in this group differ from the corresponding ones in the group
above in that they correctly take into account the quark masses. As a consequence, the
cross sections are finite for p; — 0. It is therefore not necessary to introduce any special
cuts.

The two first processes that appear here are the dominant lowest-order QCD graphs
in hadron colliders — a few other graphs will be mentioned later, such as process 83.

The choice of flavour to produce is according to a hierarchy of options:

1. if MSEL=4-8 then the flavour is set by the MSEL value;

2. else if MSTP(7)=1-8 then the flavour is set by the MSTP(7) value;

3. else the flavour is determined by the heaviest flavour allowed for gluon splitting into

quark—antiquark; see switch MDME.
Note that only one heavy flavour is allowed at a time; if more than one is turned on in
MDME, only the heaviest will be produced (as opposed to the case for ISUB = 12 and 53
above, where more than one flavour is allowed simultaneously).

The lowest-order processes listed above just represent one source of heavy-flavour pro-
duction. Heavy quarks can also be present in the parton distributions at the Q2 scale
of the hard interaction, leading to processes like Qg — Qg, so-called flavour excitation,
or they can be created by gluon splittings g — QQ in initial- or final-state shower evo-
lution. The implementation and importance of these various production mechanisms is
discussed in detail in [Nor98]. In fact, as the c.m. energy is increased, these other pro-
cesses gain in importance relative to the lowest-order production graphs above. As as
example, only 10%-20% of the b production at LHC energies come from the lowest-order
graphs. The figure is even smaller for charm, while it is well above 50% for top. At LHC
energies, the specialized treatment described in this section is therefore only of interest
for top (and potential fourth-generation quarks) — the higher-order corrections can here
be approximated by an effective K factor, except possibly in some rare corners of phase
space.

For charm and bottom, on the other hand, it is necessary to simulate the full event
sample (within the desired kinematics cuts), and then only keep those events that contain
b/c, be that either from lowest-order production, or flavour excitation, or gluon splitting.
Obviously this may be a time-consuming enterprise — although the probability for a high-
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p. event at collider energies to contain (at least) one charm or bottom pair is fairly large,
most of these heavy flavours are carrying a small fraction of the total p, flow of the jets,
and therefore do not survive normal experimental cuts. We note that the lowest-order
production of charm or bottom with processes 12 and 53, as part of the standard QCD
mix, is now basically equivalent with that offered by processes 81 and 82. For 12 vs. 81
this is rather trivial, since only s-channel gluon exchange is involved, but for process 53
it requires a separate evaluation of massive matrix elements for ¢ and b in the flavour

loop. This is performed by retaining the s and 6 values already preliminarily selected for
the massless kinematics, and recalculating ¢ and @ with mass effects included. Some of
the documentation information in PARI does not properly reflect this recalculation, but
that is purely a documentation issue. Also process 96, used internally for the total QCD
jet cross section, includes ¢ and b masses. Only the hardest interaction in a multiple
interactions scenario may contain c¢/b, however, for technical reasons, so that the total
rate may be underestimated. (Quite apart from other uncertainties, of course.)

As an aside, it is not only for the lowest-order graphs that events may be generated
with a guaranteed heavy-flavour content. One may also generate the flavour excitation
process by itself, in the massless approximation, using ISUB = 28 and setting the KFIN
array appropriately. No trick exists to force the gluon splittings without introducing
undesirable biases, however. In order to have it all, one therefore has to make a full QCD
jets run, as already noted.

Also other processes can generate heavy flavours, all the way up to top, but then
without a proper account of masses. By default, top production is switched off in those
processes where a new flavour pair is produced at a gluon or photon vertex, i.e. 12, 53, 54,
58, 96 and 135-140, while charm and bottom is allowed. These defaults can be changed
by setting the MDME (IDC, 1) values of the appropriate g or v ‘decay channels’, see further
below.

The cross section for a heavy quark pair close to threshold can be modified according
to the formulae of [Fad90], see MSTP(35). Here threshold effects due to QQ bound-state
formation are taken into account in a smeared-out, average sense. Then the naive cross
section is multiplied by the squared wave function at the origin. In a colour-singlet channel
this gives a net enhancement of the form

X (s) 47 Qg
here X5 = = , 137
where X(;) = 2 3 (137)
where 3 is the quark velocity, while in a colour octet channel there is a net suppression
given by

T (0)]* = :
[w=(0)] T—exp(—X)

X
[P0 = -

1 rma
= . where X5 = ——
exp(—X)) — 1 ®

6 0
The «y factor in this expression is related to the energy scale of bound-state formation;
it is selected independently from the one of the standard production cross section. The
presence of a threshold factor affects the total rate and also kinematical distributions.

Heavy flavours can also be produced by secondary decays of gauge bosons or new
exotic particles. We have listed 1, 2 and 142 above as among the most important ones.
There is a special point to including W’ in this list. Imagine that you want to study the
electroweak s-channel production of a single top, ud — W+ — tb, and therefore decide to
force this particular decay mode of the W. But then the same decay channel is required
for the W produced in the decay t — bW, i.e. you have set up an infinite recursion
W —t—W —t—.... The way out is to use the W, which has default couplings just
like the normal W, only a different mass, which then can be changed to agree, PMAS(34,1)
= PMAS(24,1). The W’ is now forced to decay to tb, while the W can decay freely (or also
be forced, e.g. to have a leptonic decay, if desired). (Additionally, it may be necessary to

(138)
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raise CKIN(1) to be at least around the top mass, so that the program does not get stuck
in a region of phase space where the cross section is vanishing.)

Heavy flavours, i.e. top and fourth generation, are assumed to be so short-lived that
they decay before they have time to hadronize. This means that the light quark in the
decay Q — W™*q inherits the colour of the heavy one. The current PYTHIA description
represents a change of philosophy compared to older versions, formulated at a time when
the top was thought to be much lighter than we now know it to be. For event shapes the
difference between the two time orderings normally has only marginal effects [Sj692a).

It should be noted that cross section calculations are different in the two cases. The
top (or a fourth generation fermion) is assumed short-lived, and is treated like a resonance
in the sense of section 7.6.2, i.e. the cross-section is reduced so as only to correspond to
the channels left open by you. This also includes the restrictions on secondary decays,
i.e. on the decays of a W or a H" produced in the top decay. For b and ¢ quarks, which
are long-lived enough to form hadrons, no such reduction takes place. Branching ratios
then have to be folded in by hand to get the correct cross sections. The logic behind this
difference is that when hadronization takes place, one would normally decay the D° and
D™ meson according to different branching ratios. But which D mesons are to be formed
is not known at the bottom quark creation, so one could not weight for that. For a t
quark, which decays rapidly, this ambiguity does not exist, and so a reduction factor can
be introduced directly coupled to the t quark production process.

This rule about cross-section calculations applies to all the processes explicitly set up
to handle heavy flavour creation. In addition to the ones above, this means all the ones in
Tables 17-24 where the fermion final state is given as capital letters (‘Q’ and ‘F’) and also
flavours produced in resonance decays (Z°, W=, h?, etc., including processes 165 and 166).
However, heavy flavours could also be produced in a process such as 31, q;g — q W=,
where q could be a top quark. In this case, the thrust of the description is clearly on
light flavours — the kinematics of the process is formulated in the massless fermion limit
— so any top production is purely incidental. Since here the choice of scattered flavour
is only done at a later stage, the top branching ratios are not correctly folded in to the
hard scattering cross section. So, for applications like these, it is not recommended to
restrict the allowed top decay modes. Often one might like to get rid of the possibility
of producing top together with light flavours. This can be done by switching off (i.e.
setting MDME(I,1)=0) the ‘channels’d — W~t, s = W~ t, b — W~t, g — tt and v — tt.
Also any heavy flavours produced by parton shower evolution would not be correctly
weighted into the cross section. However, currently top production is switched off both
as a beam remnant (see MSTP(9) and in initial (see KFIN array) and final (see MSTJ(45))
state radiation.

In pair production of heavy flavour (top) in processes 81,82, 84 and 85, matrix elements
are only given for one common mass, although Breit-Wigners are used to select two
separate masses. As described in subsection 7.3, an average mass value is constructed for
the matrix element evaluation so that the (34, kinematics factor can be retained.

Because of its large mass, it is possible that the top quark can decay to some not yet
discovered particle. Some such alternatives are included in the program, such as t — bH*
or t — Gt. These decays are not obtained by default, but can be included as discussed
for the respective physics scenario.
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8.2.3 J/v¢ and other Hidden Heavy Flavours
ISUB= 86 gg— J/¢g

87 88 — Xoc8

88 g8 — X1c8

89 88 — X2c8
104 gg — Xoc
105 gg — x2c

106 gg—h]/lp”y
107 gy — J/vg

108 yy — J/vy

In PYTHIA one may distinguish between three main sources of J /v production.

1. Decays of B mesons and baryons.

2. Parton-shower evolution, wherein a ¢ and a € quark produced in adjacent branchings
(e.g. g — gg — ctct) turn out to have so small an invariant mass that the pair
collapses to a single particle.

3. Direct production, where a ¢ quark loop gives a coupling between a set of gluons
and a c¢ bound state. Higher-lying states, like the y. ones, may subsequently decay
to J/1.

The first two sources are implicit in the production of b and ¢ quarks, although the
forcing specifically of J/v¢ production is difficult. In this section are given the main
processes for the third source, intended for applications at hadron colliders. Processes
104 and 105 are the equivalents of 87 and 89 in the limit of p; — 0; note that gg — J/¢
and gg — x1. are forbidden and thus absent. As always one should beware of double-
counting between 87 and 104, and between 89 and 105, and thus use either the one or the
other depending on the kinematical domain to be studied. The cross sections depend on
wave function values at the origin, see PARP(38) and PARP(39). A review of the physics
issues involved may be found in [Glo88] (note, however, that the choice of Q* scale is
different in PYTHIA).

It is known that the above sources are not enough to explain the full J/¢ rate, and
further production mechanisms have been proposed, extending on the more conventional
treatment here [Can97].

While programmed for the charm system, it would be straightforward to apply these
processes instead to bottom mesons. One needs to change the codes of states produced,
which is achieved by KFPR(ISUB,1)=KFPR(ISUB,1)+110 for the processes ISUB above,
and changing the values of the wave functions at the origin, PARP(38) and PARP(39).

8.2.4 Minimum bias

MSEL = 1, 2

ISUB = 91 elastic scattering
92 single diffraction (AB — X B)
93 single diffraction (AB — AX)
94 double diffraction

95 low-p, production
These processes are briefly discussed in section 7.7. They are mainly intended for
interactions between hadrons, although one may also consider vp and 77 interactions in
the options where the incoming photon(s) is (are) assumed resolved.
Uncertainties come from a number of sources, e.g. from the parameterizations of the
various cross sections and slope parameters.
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In diffractive scattering, the structure of the selected hadronic system may be regulated
with MSTP(101). No high-p, jet production in diffractive events is included so far.

The subprocess 95, low-p, events, is somewhat unique in that no meaningful physical
border-line to high-p, events can be defined. Even if the QCD 2 — 2 high-p, processes
are formally switched off, some of the generated events will be classified as belonging to
this group, with a p, spectrum of interactions to match the ‘minimum-bias’ event sample.
The generation of such jets is performed with the help of the auxiliary subprocess 96, see
subsection 8.2.1. Only with the option MSTP(82)=0 will subprocess 95 yield strictly low-
p. events, events which will then probably not be compatible with any experimental data.
A number of options exist for the detailed structure of low-p, events, see in particular
MSTP(81) and MSTP(82). Further details on the model(s) for minimum-bias events are
found in section 11.2.

8.3 Physics with Incoming Photons

With recent additions, the machinery for photon physics has become rather extensive
[Fri00]. The border between the physics of real photon interactions and of virtual photon
ones is now bridged by a description that continuously interpolates between the two
extremes, as summarized in section 7.7.2. Furthermore, the > gamma/lepton’ option (where
lepton is to be replaced by e-, e+, mu-, mu+, tau- or tau+ as the case may be) in a PYINIT
call gives access to an internally generated spectrum of photons of varying virtuality.
The CKIN(61) - CKIN(78) variables can be used to set experimentally motivated x and
Q)? limits on the photon fluxes. With this option, and the default MSTP(14)=30, one
automatically obtains a realistic first approximation to ‘all’ QCD physics of v*p and y*~*
interactions. The word ‘all’ clearly does not mean that a perfect description is guaranteed,
or that all issues are addressed, but rather that the intention is to simulate all processes
that give a significant contribution to the total cross section in whatever Q2 range is being
studied: jets, low-p, events, elastic and diffractive scattering, etc.

The material to be covered encompasses many options, several of which have been
superseded by further developments but have been retained for backwards compatibility.
Therefore it is here split into three sections. The first covers the physics of real photons
and the subsequent one that of (very) virtual ones. Thereafter, in the final section, the
threads are combined into a machinery applicable at all (2.

8.3.1 Photoproduction and vy physics

MSEL — 1,2, 4, 5, 6, 7, 8
ISUB = 33 a7 — Qg

34 Ly =ty
54 gy — QT

80 iy —
84 gy — QeQy
An (almost) real photon has both a point-like component and a hadron-like one. This
means that several classes of processes may be distinguished, see section 7.7.2.
1. The processes listed above are possible when the photon interacts as a point-like
particle, i.e. couples directly to quarks and leptons.
2. When the photon acts like a hadron, i.e. is resolved in a partonic substructure,
then high-p, parton—parton interactions are possible, as described in sections 8.2.1
and 8.4.1. These interactions may be further subdivided into VMD and anomalous

(GVMD) ones [Sch93, Sch93a].
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3. A hadron-like photon can also produce the equivalent of the minimum bias processes
of section 8.2.4. Again, these can be subdivided into VMD and GVMD (anomalous)
ones.

For vp events, we believe that the best description can be obtained when three separate
event classes are combined, one for direct, one for VMD and one for GVMD /anomalous
events, see the detailed description in [Sch93, Sch93a]. These correspond to MSTP(14)
being 0, 2 and 3, respectively. The direct component is high-p, only, while VMD and
GVMD contain both high-p; and low-p; events. The option MSTP(14)=1 combines the
VMD and GVMD/anomalous parts of the photon into one single resolved photon concept,
which therefore is less precise than the full subdivision.

When combining three runs to obtain the totality of yp interactions, to the best of
our knowledge, it is necessary to choose the p, cut-offs with some care, so as to represent
the expected total cross section.

e The direct processes by themselves only depend on the CKIN(3) cut-off of the gener-
ation. In older program versions the preferred value was 0.5 GeV [Sch93, Sch93a]. In
the more recent description in [Fri00], also eikonalization of direct with anomalous
interactions into the GVMD event class is considered. That is, given a branching
v — qq, direct interactions are viewed as the low-p; events and anomalous ones as
high-p, events that have to merge smoothly. Then the CKIN(3) cut-off is increased
to the p min of multiple interactions processes, see PARP(81) (or PARP(82), depend-
ing on minijet unitarization scheme). See MSTP(18) for a possibility to switch back
to the older behaviour. However, full backwards compatibility cannot be assured,
so the older scenarios are better simulated by using an older PYTHIA version.

e The VMD processes work as ordinary hadron—hadron ones, i.e. one obtains both
low- and high-p, events by default, with dividing line set by p) min above.

e Also the GVMD processes work like the VMD ones. Again this is a change from
previous versions, where the anomalous processes only contained high-p, physics
and the low-p; part was covered in the direct event class. See MSTP(15)=5 for a
possibility to switch back to the older behaviour, with comments as above for the
direct class. A GVMD state is book-kept as a diffractive state in the event listing,
even when it scatters ‘elastically’, since the subsequent hadronization descriptions
are very similar.

The processes in points 1 and 2 can be simulated with a photon beam, i.e. when
’gamma’ appears as argument in the PYINIT call. It is then necessary to use option
MSTP(14) to switch between a point-like and a resolved photon — it is not possible to
simulate the two sets of processes in a single run. This would be the normal mode of
operation for beamstrahlung photons, which have Q? = 0 but with a nontrivial energy
spectrum that would be provided by some external routine.

For bremsstrahlung photons, the z and Q? spectrum can be simulated internally, with
the ’gamma/lepton’ argument in the PYINIT call. This is the recommended procedure,
wherein direct and resolved processes can be mixed. An older — now not recommended
— alternative is to use a parton-inside-electron structure function concept, obtainable
with a simple ’e-’ (or other lepton) argument in PYINIT. To access these quark and
gluon distributions inside the photon (itself inside the electron), MSTP(12)=1 must then
be used. Also the default value MSTP(11)=1 is required for the preceding step, that of
finding photons inside the electron. Also here the direct and resolved processes may be
generated together. However, this option only works for high-p, physics. It is not possible
to have also the low-p, physics (including multiple interactions in high-p, events) for an
electron beam. Kindly note that subprocess 34 contains both the scattering of an electron
off a photon and the scattering of a quark (inside a photon inside an electron) off a photon;
the former can be switched off with the help of the KFIN array.

If you are only concerned with standard QCD physics, the option MSTP(14)=10
or the default MSTP(14)=30 gives an automatic mixture of the VMD, direct and
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GVMD /anomalous event classes. The mixture is properly given according to the rel-
ative cross sections. Whenever possible, this option is therefore preferable in terms of
user-friendliness. However, it can only work because of a completely new layer of admin-
istration, not found anywhere else in PYTHIA. For instance, a subprocess like qg — qg
is allowed in several of the classes, but appears with different sets of parton distributions
and different p; cut-offs in each of these, so that it is necessary to switch gears between
each event in the generation. It is therefore not possible to avoid a number of restrictions
on what you can do in this case:

e The MSTP(14)=10 and =30 options can only be used for incoming photon beams,
with or without convolution with the bremsstrahlung spectrum, i.e. when ’gamma’
or ’gamma/lepton’ is the argument in the PYINIT call.

e The machinery has only been set up to generate standard QCD physics, specifically
either ‘minimum-bias’ one or high-p, jets. There is thus no automatic mixing of
processes only for heavy-flavour production, say, or of some exotic particle. For
minimum bias, you are not allowed to use the CKIN variables at all. This is not a
major limitation, since it is in the spirit of minimum-bias physics not to impose any
constraints on allowed jet production. (If you still do, these cuts will be ineffective
for the VMD processes but take effect for the other ones, giving inconsistencies.) The
minimum-bias physics option is obtained by default; by switching from MSEL=1 to
MSEL=2 also the elastic and diffractive components of the VMD and GVMD parts are
included. High-p, jet production is obtained by setting the CKIN(3) cut-off larger
than the p min(W?) of the multiple interactions scenario. For lower input CKIN(3)
values the program will automatically switch back to minimum-bias physics.

e Multiple interactions become possible in both the VMD and GVMD sector, with
the average number of interactions given by the ratio of the jet to the total cross
section. Currently only the simpler default scenario MSTP(82)=1 is implemented,
however, i.e. the more sophisticated variable-impact-parameter ones need further
physics studies and model development.

e Some variables are internally recalculated and reset, notably CKIN(3). This is be-
cause it must have values that depend on the component studied. It can therefore
not be modified without changing PYINPR and recompiling the program, which ob-
viously is a major exercise.

e Pileup events are not at all allowed.

Also, a warning about the usage of PDFLIB for photons. So long as MSTP(14)=1, i.e.
the photon is not split up, PDFLIB is accessed by MSTP (56)=2 and MSTP (55) as the parton
distribution set. However, when the VMD and anomalous pieces are split, the VMD part
is based on a rescaling of pion distributions by VMD factors (except for the SaS sets, that
already come with a separate VMD piece). Therefore, to access PDFLIB for MSTP (14)=10,
it is not correct to set MSTP(56)=2 and a photon distribution in MSTP(55). Instead, one
should put MSTP(56)=2, MSTP(54)=2 and a pion distribution code in MSTP(53), while
MSTP (55) has no function. The anomalous part is still based on the SaS parameterization,
with PARP(15) as main free parameter.

Currently, hadrons are not defined with any photonic content. None of the processes
are therefore relevant in hadron—hadron collisions. In ep collisions, the electron can emit
an almost real photon, which may interact directly or be resolved. In eTe™ collisions, one
may have direct, singly-resolved or doubly-resolved processes.

The vy equivalent to the vp description involves six different event classes, see section
7.7.2. These classes can be obtained by setting MSTP(14) to 0, 2, 3, 5, 6 and 7, respectively.
If one combines the VMD and anomalous parts of the parton distributions of the photon,
in a more coarse description, it is enough to use the MSTP(14) options 0, 1 and 4. The
cut-off procedures follows from the ones used for the yp ones above.

As with yp events, the options MSTP (14)=10 or MSTP (14)=30 give a mixture of the six
possible vy event classes. The same complications and restrictions exist here as already
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listed above.

Process 54 generates a mixture of quark flavours; allowed flavours are set by the gluon
MDME values. Process 58 can generate both quark and lepton pairs, according to the
MDME values of the photon. Processes 84 and 85 are variants of these matrix elements,
with fermion masses included in the matrix elements, but where only one flavour can
be generated at a time. This flavour is selected as described for processes 81 and 82
in section 8.2.2, with the exception that for process 85 the ‘heaviest’ flavour allowed for
photon splitting takes to place of the heaviest flavour allowed for gluon splitting. Since
lepton KF codes come after quark ones, they are counted as being ‘heavier’, and thus take
precedence if they have been allowed.

Process 80 is a higher twist one. The theory for such processes is rather shaky, so
results should not be taken too literally. The messy formulae given in [Bag82] have
not been programmed in full, instead the pion form factor has been parameterized as
Q?F(Q?) ~ 0.55/In Q?, with Q in GeV.

8.3.2 Deeply Inelastic Scattering and v*y* physics

MSEL = 1, 2, 35, 36, 37, 38
83  qif; — Qufi
9 7'q—q
135 gy3 — L,
136 gy, — f;f;
138 yiop — G,
139 ~fyr — £,
140 4in; — L,

Among the processes in this section, 10 and 83 are intended to stand on their own,
while the rest are part of the newer machinery for v*p and y*y* physics. We therefore
separate the description in this section into these two main parts.

The Deeply Inelastic Scattering (DIS) processes, i.e. t-channel electroweak gauge boson
exchange, are traditionally associated with interactions between a lepton or neutrino and
a hadron, but processes 10 and 83 can equally well be applied for qq scattering in hadron
colliders (with a cross section much smaller than corresponding QCD processes, however).
If applied to incoming eTe™ beams, process 10 corresponds to Bhabha scattering.

For process 10 both v, Z° and W* exchange contribute, including interference between
v and Z°. The switch MSTP(21) may be used to restrict to only some of these, e.g. neutral
or charged current only.

The option MSTP(14)=10 (see previous section) has now been extended so that it also
works for DIS of an electron off a (real) photon, i.e. process 10. What is obtained is
a mixture of the photon acting as a vector meson and it acting as an anomalous state.
This should therefore be the sum of what can be obtained with MSTP(14)=2 and =3. It
is distinct from MSTP(14)=1 in that different sets are used for the parton distributions
— in MSTP(14)=1 all the contributions to the photon distributions are lumped together,
while they are split in VMD and anomalous parts for MSTP(14)=10. Also the beam
remnant treatment is different, with a simple Gaussian distribution (at least by default)
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for MSTP(14)=1 and the VMD part of MSTP(14)=10, but a powerlike distribution dk? /k%
between PARP(15) and () for the anomalous part of MSTP(14)=10.

To access this option for e and + as incoming beams, it is only necessary to set
MSTP(14)=10 and keep MSEL at its default value. Unlike the corresponding option for yp
and 7, no cuts are overwritten, i.e. it is still your responsibility to set these appropriately.

Cuts especially appropriate for DIS usage include either CKIN(21)-CKIN(22) or
CKIN(23)-CKIN(24) for the x range (former or latter depending on which side is the
incoming real photon), CKIN(35)-CKIN(36) for the Q? range, and CKIN(39)-CKIN(40)
for the W2 range.

In principle, the DIS z variable of an event corresponds to the z value stored in
PARI(33) or PARI(34), depending on which side the incoming hadron is on, while the
DIS Q? = —t =-PARI(15). However, just like initial- and final-state radiation can shift
jet momenta, they can modify the momentum of the scattered lepton. Therefore the DIS
x and Q? variables are not automatically conserved. An option, on by default, exists in
MSTP (23), where the event can be ‘modified back’ so as to conserve z and Q?, but this
option is rather primitive and should not be taken too literally.

Process 83 is the equivalent of process 10 for W* exchange only, but with the heavy-
quark mass included in the matrix element. In hadron colliders it is mainly of interest for
the production of very heavy flavours, where the possibility of producing just one heavy
quark is kinematically favoured over pair production. The selection of the heavy flavour
is already discussed in section 8.2.2.

Turning to the other processes, part of the v*p and v*v* process-mixing machineries,
99 has close similarities with the above discussed 10 one. Whereas 10 would simulate the
full process eq — eq, 99 assumes a separate machinery for the flux of virtual photons,
e — ey* and only covers the second half of the process, v*q — ¢. One limitation of this
factorization is that only virtual photons are considered in process 99, not contributions
from the Z° neutral current or the W charged current.

Note that 99 has no correspondence in the real-photon case, but has to vanish in
this limit by gauge invariance, or indeed by simple kinematics considerations. This, plus
the desire to avoid double-counting with real-photon physics processes, is why the cross
section for this process is explicitly made to vanish for photon virtuality Q% — 0, eq. (127),
also when parton distributions have not been constructed to fulfil this, see MSTP(19). (No
such safety measures are present in 10, again illustrating how the two are intended mainly
to be used at large or at small Q?, respectively.)

For a virtual photon, processes 131-136 may be viewed as first-order corrections to
99. The three with a transversely polarized photon, 131, 133 and 135, smoothly reduce
to the real-photon direct (single-resolved for =) processes 33, 34 and 54. The other
three, corresponding to the exchange of a longitudinal photon, vanish like Q? for Q% — 0.
The double-counting issue with process 99 is solved by requiring the latter process not to
contain any shower branchings with a p; above the lower p, cut-off of processes 131-136.
The cross section is then to be reduced accordingly, see eq. (128) and the discussion there,
and again MSTP(19).

We thus see that process 99 by default is a low-p, process in about the same sense
as process 95, giving ‘what is left’ of the total cross section when jet events have been
removed. Therefore, it will be switched off in event class mixes such as MSTP(14)=30 if
CKIN(3) is above puin(W?) and MSEL is not 2. There is a difference, however, in that
process 99 events still are allowed to contain shower evolution (although currently only
the final-state kind has been implemented), since the border to the other processes is at
p1 = @ for large () and thus need not be so small. The p, scale of the ‘hard process’,
stored e.g. in PARI(17) always remains 0, however. (Other PARI variables defined for
normal 2 — 2 and 2 — 1 processes are not set at all, and may well contain irrelevant junk
left over from previous events.)

Processes 137-140, finally, are extensions of process 58 from the real-photon limit to
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the virtual-photon case, and correspond to the direct process of v*~* physics. The four
cases correspond to either of the two photons being either transversely or longitudinally
polarized. As above, the cross section of a longitudinal photon vanishes when its virtuality
approaches 0.

8.3.3 Photon physics at all virtualities

ISUB = direct xdirect: 137, 138, 139, 140
direct xresolved: 131, 132, 135, 136
DIS xresolved: 99

resolved xresolved, high-p,: 11, 12, 13, 28, 53, 68

resolved xresolved, low-p,: 91, 92, 93, 94, 95
where ‘resolved’ is a hadron or a VMD or GVMD photon.

At intermediate photon virtualities, processes described in both of the sections above
are allowed, and have to be mixed appropriately. The sets are of about equal importance
at around Q? ~ mf) ~ 1 GeV?, but the transition is gradual over a larger Q* range. The
ansatz for this mixing is given by eq. (129) for v*p events and eq. (130) for v*+* ones. In
short, for direct and DIS processes the photon virtuality explicitly enters in the matrix
element expressions, and thus is easily taken into account. For resolved photons, pertur-
bation theory does not provide a unique answer, so instead cross sections are suppressed
by dipole factors, (m?/(m? + Q?))?, where m = my for a VMD state and m = 2k, for a
GVMD state characterized by a k, scale of the v* — qq branching. These factors appear
explicitly for total, elastic and diffractive cross sections, and are also implicitly used e.g. in
deriving the SaS parton distributions for virtual photons. Finally, some double-counting
need to be removed, between direct and DIS processes as mentioned in the previous
section, and between resolved and DIS at large x.

Since the mixing is not trivial, it is recommended to use the default MSTP(14)=30 to
obtain it in one go and hopefully consistently, rather than building it up by combining
separate runs. The main issues still under your control include, among others

e The CKIN(61) - CKIN(78) should be used to set the range of x and Q? values
emitted from the lepton beams. That way one may decide between almost real or
very virtual photons, say. Also some other quantities, like W2, can be constrained
to desirable ranges.

e Whether or not minimum bias events are simulated depends on the CKIN(3) value,
just like in hadron physics. The only difference is that the initialization energy scale
Wit is selected in the allowed W range rather than to be the full c.m. energy.

For a high CKIN(3), CKIN(3)> pimin(W2,), only jet production is included. Then
further CKIN values can be set to constrain e.g. the rapidity of the jets produced.
For a low CKIN(3), CKIN(3)< pimn(W3,), like the default value CKIN(3) = 0,
low-p, physics is switched on together with jet production, with the latter properly
eikonalized to be lower than the total one. The ordinary CKIN cuts, not related to
the photon flux, cannot be used here.

For a low CKIN(3), when MSEL=2 instead of the default =1, also elastic and diffractive
events are simulated.

e The impact of resolved longitudinal photons is not unambiguous, e.g. only recently
the first parameterization of parton distributions appeared [Chy00]. Different simple
alternatives can be probed by changing MSTP(17) and associated parameters.

e The choice of scales to use in parton distributions for jet rates is always ambiguous,
but depends on even more scales for virtual photons than in hadronic collisions.
MSTP (32) allows a choice between several alternatives.

e The matching of p, generation by shower evolution to that by primordial k£, is a
general problem, for photons with an additional potential source in the v* — qq
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vertex. MSTP(66) offer some alternatives.

PARP(15) is the ky parameter separating VMD from GVMD.

PARP(18) is the k, parameter in GVMD total cross sections.

MSTP(16) selects the momentum variable for an e — ey* branching.

MSTP (18) regulates the choice of p, i, for direct processes.

MSTP (19) regulates the choice of partonic cross section in process 99, v*q — q.
MSTP (20) regulates the suppression of the resolved cross section at large x.
The above list is not complete, but gives some impression what can be done.

8.4 Electroweak Gauge Bosons

This section covers the production and/or exchange of v, Z° and W gauge bosons, singly
and in pairs. The topic of longitudinal gauge-boson scattering at high energies is deferred
to the Higgs section, since the presence or absence of a Higgs here makes a big difference.

8.4.1 Prompt photon production

MSEL = 10
18 i — 4y
29 qig — qiy
114 gg— vy
115 gg — gy

In hadron colliders, processes ISUB = 14 and 29 give the main source of single-y
production, with ISUB = 115 giving an additional contribution which, in some kinematics
regions, may become important. For «-pair production, the process ISUB = 18 is often
overshadowed in importance by ISUB = 114.

Another source of photons is bremsstrahlung off incoming or outgoing quarks. This
has to be treated on an equal footing with QCD parton showering. For time-like parton-
shower evolution, i.e. in the final-state showering and in the side branches of the initial-
state showering, photon emission may be switched on or off with MSTJ(41). Photon
radiation off the space-like incoming quark legs is not yet included, but should be of
lesser importance for production at reasonably large p, values. Radiation off an incoming
electron is included in a leading-log approximation.

Warning: the cross sections for the box graphs 114 and 115 become very complicated,
numerically unstable and slow when the full quark mass dependence is included. For quark
masses much below the § scale, the simplified massless expressions are therefore used
— a fairly accurate approximation. However, there is another set of subtle numerical
cancellations between different terms in the massive matrix elements in the region of
small-angle scattering. The associated problems have not been sorted out yet. There
are therefore two possible solutions. One is to use the massless formulae throughout.
The program then becomes faster and numerically stable, but does not give, for example,
the characteristic dip (due to destructive interference) at top threshold. This is the
current default procedure, with five flavours assumed, but this number can be changed
in MSTP(38). The other possibility is to impose cuts on the scattering angle of the hard
process, see CKIN(27) and CKIN(28), since the numerically unstable regions are when

|cosé | is close to unity. It is then also necessary to change MSTP(38) to 0.
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8.4.2 Single W/Z production

MSEL = 11, 12, 13, 14, 15, (21)
30 f,g — f;(y*/Z°)
(141) ff, — fy/ZO/ZIO
(142) fzfj — WH—

This group consists of 2 — 1 processes, i.e. production of a single resonance, and
2 — 2 processes, where the resonance is recoiling against a jet or a photon. The processes
141 and 142, which also are listed here, are described further elsewhere.

With initial-state showers turned on, the 2 — 1 processes also generate additional jets;
in order to avoid double-counting, the corresponding 2 — 2 processes should therefore not
be turned on simultaneously. The basic rule is to use the 2 — 1 processes for inclusive
generation of W/Z, i.e. where the bulk of the events studied have p, < myy,z. With the
introduction of explicit matrix-element-inspired corrections to the parton shower [Miu99],
also the high-p, tail is well described in this approach, thus offering an overall good
description of the full p; spectrum of gauge bosons [B4l01].

If one is interested in the high-p, tail only, however, the generation efficiency will be
low. It is here better to start from the 2 — 2 matrix elements and add showers to these.
However, the 2 — 2 matrix elements are divergent for p; — 0, and should not be used
down to the low-p, region, or one may get unphysical cross sections. As soon as the
generated 2 — 2 cross section corresponds to a non-negligible fraction of the total 2 — 1
one, say 10%-20%, Sudakov effects are likely to be affecting the shape of the p, spectrum
to a corresponding extent, and results should not be trusted.

The problems of double-counting and Sudakov effects apply not only to W/Z produc-
tion in hadron colliders, but also to a process like eTe™ — Z%y, which clearly is part of
the initial-state radiation corrections to ete™ — Z° obtained for MSTP(11)=1. As is the
case for Z production in association with jets, the 2 — 2 process should therefore only be
used for the high-p, region.

The Z° of subprocess 1 includes the full interference structure v*/Z°% via MSTP(43)
you can select to produce only v*, only Z° or the full 4*/Z°. The same holds true
for the Z"° of subprocess 141; via MSTP(44) any combination of v*, Z° and Z can be
selected. Thus, subprocess 141 with MSTP (44)=4 is essentially equivalent to subprocess 1
with MSTP (43)=3; however, process 141 also includes the possibility of a decay into Higgs
bosons. Also processes 15, 19, 30 and 35 contain the full mixture of v*/Z°, with MSTP (43)
available to change this.

Note that process 1, with only qq — ~* — 7/~ allowed, and studied in the region
well below the Z° mass, is what is conventionally called Drell-Yan. This latter process
therefore does not appear under a separate heading, but can be obtained by a suitable
setting of switches and parameters.

A process like f;f; — YW is only included in the limit that the v is emitted in the
‘initial state’, while the possibility of a final-state radiation off the W decay products is
not explicitly included (but can be obtained implicitly by the parton-shower machinery)
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and various interference terms are not at all present. Some caution must therefore be
exercised; see also section 8.4.3 for related comments.

For the 2 — 1 processes, the Breit—Wigner includes an s-dependent width, which
should provide an improved description of line shapes. In fact, from a line-shape point
of view, process 1 should provide a more accurate simulation of e"e™ annihilation events
than the dedicated e™e™ generation scheme of PYEEVT (see section 6.1). Another differ-
ence is that PYEEVT only allows the generation of v*/Z° — qq, while process 1 additionally
contains v*/Z° — (T~ and v*/Z° — vv. The parton-shower and fragmentation descrip-
tions are the same, but the process 1 implementation only contains a partial interface to
the first- and second-order matrix-element options available in PYEEVT, see MSTP (48).

All processes in this group have been included with the correct angular distribution
in the subsequent W /Z — ff decays. In process 1 also fermion mass effects have been in-
cluded in the angular distributions, while this is not the case for the other ones. Normally
mass effects are not large anyway.

The process ete™ — ete™Z° can be simulated in two different ways. One is to make
use of the e ‘sea’ distribution inside e, i.e. have splittings e — v — e. This can be
obtained, together with ordinary Z° production, by using subprocess 1, with MSTP(11)=1
and MSTP(12)=1. Then the contribution of the type above is 5.0 pb for a 500 GeV ete™
collider, compared with the correct 6.2 pb [Hag91]. Alternatively one may use process 35,
with MSTP(11)=1 and MSTP(12)=0. This process has a singularity in the forward direction,
regularized by the electron mass and also sensitive to the virtuality of the photon. It is
therefore among the few where the incoming masses have been included in the matrix
element expression. Nevertheless, it may be advisable to set small lower cut-offs, e.g.
CKIN(3)=CKIN(5)=0.01, if one should experience problems (e.g. at higher energies).

Process 36, fy — f'W* may have corresponding problems; except that in e*e™ the
forward scattering amplitude for ey — vW is killed (radiation zero), which means that
the differential cross section is vanishing for p; — 0. It is therefore feasible to use the
default CKIN(3) and CKIN(5) values in ete™, and one also comes closer to the correct
cross section. _

The process gg — Z°bb, formerly available as process 131, has been removed
from the current version, since the implementation turned out to be slow and un-
stable. However, process 1 with incoming flavours set to be bb (by KFIN(1,5)=
KFIN(1,-5)=KFIN(2,5)=KFIN(2,-5)=1 and everything else =0) provides an alternative
description, where the additional bb are generated by g — bb branchings in the initial-
state showers. (Away from the low-p, region, process 30 with KFIN values as above except
that also incoming gluons are allowed, offers yet another description. Here it is in terms
of gb — Z°b, with only one further g — bb branching constructed by the shower.) At
first glance, the shower approach would seem less reliable than the full 2 — 3 matrix ele-
ment. The relative lightness of the b quark will generate large logs of the type In(m2/m?),
however, that ought to be resummed [Car00]. This is implicit in the parton-density ap-
proach of incoming b quarks but absent from the lowest-order gg — Z°bb matrix elements.
Therefore actually the shower approach may be the more accurate of the two. Within the
general range of uncertainty of any leading-order description, at least it is not any worse.

8.4.3 W/Z pair production

MSEL = 15 B
ISUB = 22 £F — (v*/Z°)(v*/Z°)
23 flf] — ZOVVJr
25 fif; — WHW-
69 vy — WHW-
70 AW — ZOWT
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In this section we mainly consider the production of W /Z pairs by fermion—antifermion
annihilation, but also include two processes which involve v/W beams. Scatterings be-
tween gauge-boson pairs, i.e. processes like WHW— — Z°Z° depend so crucially on the
assumed Higgs scenario that they are considered separately in section 8.5.2.

The cross sections used for the above processes are those derived in the narrow-width
limit, but have been extended to include Breit-Wigner shapes with mass-dependent
widths for the final-state particles. In process 25, the contribution from Z° exchange
to the cross section is now evaluated with the fixed nominal Z° mass and width in the
propagator. If instead the actual mass and the running width were to be used, it gives a
diverging cross section at large energies, by imperfect gauge cancellation.

However, one should realize that other graphs, not included here, can contribute in
regions away from the W /Z mass. This problem is especially important if several flavours
coincide in the four-fermion final state. Consider, as an example, ee™ — p*p~v,7,. Not
only would such a final state receive contributions from intermediate Z°Z° and WHW~
states, but also from processes ete”™ — Z° — pupu~, followed either by pu* — put72°% —
pry,w,, or by pt — 7,W" — 7,u"v,. In addition, all possible interferences should
be considered. Since this is not done, the processes have to be used with some sound
judgement. Very often, one may wish to constrain a lepton pair mass to be close to mz,
in which case a number of the possible ‘other’ processes are negligible.

For the W pair production graph, one experimental objective is to do precision mea-
surements of the cross section near threshold. Then also other effects enter. One such is
Coulomb corrections, induced by photon exchange between the two W’s and their decay
products. The gauge invariance issues induced by the finite W lifetime are not yet fully
resolved, and therefore somewhat different approximate formulae may be derived [Kho96].
The options in MSTP(40) provide a reasonable range of uncertainty.

Of the above processes, the first contains the full f;f; — (y*/Z°%)(v*/Z°) structure,
obtained by a straightforward generalization of the formulae in ref. [Gun86] (done by one
of the PYTHIA authors). Of course, the possibility of there being significant contributions
from graphs that are not included is increased, in particular if one ~* is very light and
therefore could be a bremsstrahlung-type photon. It is possible to use MSTP (43) to recover
the pure Z° case, i.e. f;f; — Z°Z° exclusively. In processes 23 and 70, only the pure Z°
contribution is included.

Full angular correlations are included for the first three processes, i.e. the full 2 — 2 —
4 matrix elements are included in the resonance decays, including the appropriate v*/Z°
interference in process 22. In the latter two processes no spin information is currently
preserved, i.e. the W/Z bosons are allowed to decay isotropically.

We remind you that the mass ranges of the two resonances may be set with the
CKIN(41) - CKIN(44) parameters; this is particularly convenient, for instance, to pick
one resonance almost on the mass shell and the other not.

8.5 Higgs Production

A fair fraction of all the processes in PYTHIA deal with Higgs production in one form or
another. This multiplication is caused by the need to consider production by several differ-
ent processes, depending on Higgs mass and machine type. Further, the program contains
a full two-Higgs-multiplet scenario, as predicted for example in the Minimal Supersym-
metric extension of the Standard Model (MSSM). Therefore the continued discussion is,
somewhat arbitrarily, subdivided into a few different scenarios. Doubly-charged Higgs
particles appear in left-right symmetric models, and are covered in section 8.6.3.
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8.5.1 Light Standard Model Higgs

MSEL = 16, 17, 18
24 fzﬂ — ZOhO
32 fig — f;h?
102 gg — h°
103 4y — h°
110 f;f; — ~h°
111 f;f;, — gh°
113 gg — gh®
121 gg — QiQ;h°
122 qq; — QpQuh”
123 flf] — fzfjho (ZOZO quiOH)
124 f;f; — ffh° (WHW™ fusion)

In this section we discuss the production of a reasonably light Standard Model Higgs,
below 700 GeV, say, so that the narrow width approximation can be used with some
confidence. Below 400 GeV there would certainly be no trouble, while above that the
narrow width approximation is gradually starting to break down.

In a hadron collider, the main production processes are 102, 123 and 124, i.e. gg, Z°Z°
and WHW~ fusion. In the latter two processes, it is also necessary to take into account
the emission of the space-like W/Z bosons off quarks, which in total gives the 2 — 3
processes above.

Further processes of lower cross sections may be of interest because of easier signals.
For instance, processes 24 and 26 give associated production of a Z or a W together with
the h®. There is also the processes 3 (see below), 121 and 122, which involve production
of heavy flavours.

Process 3 contains contributions from all flavours, but is completely dominated by the
subprocess tt — h°, i.e. by the contribution from the top sea distributions. Assuming,
of course, that parton densities for top quarks are available, which is no longer the case
in current parameterizations. This process is by now known to overestimate the cross
section for Higgs production as compared with a more careful calculation based on the
subprocess gg — tth®, process 121. The difference between the two is that in process 3
the t and t are added by the initial-state shower, while in 121 the full matrix element
is used. The price to be paid is that the complicated multibody phase space in process
121 makes the program run slower than with most other processes. As usual, it would be
double-counting to include the same flavour both with 3 and 121. An intermediate step
— in practice probably not so useful — is offered by process 32, qg — ¢h®, where the
quark is assumed to be a b one, with the antiquark added by the showering activity.

Process 122 is similar in structure to 121, but is less important. In both process 121
and 122 the produced quark is assumed to be a t; this can be changed in KFPR(121,2) and
KFPR(122,2) before initialization, however. For b quarks it could well be that process 3
with bb — h® is more reliable than process 121 with gg — bbh° [Car00]; see the discussion
on Z%b final states in section 8.4.2. Thus it would make sense to run with all quarks
up to and including b simulated in process 3 and then consider t quarks separately in
process 121. Assuming no t parton densities, this would actually be the default behaviour,
meaning that the two could be combined in the same run without double counting.

The two subprocess 112 and 113, with a Higgs recoiling against a quark or gluon
jet, are also effectively generated by initial-state corrections to subprocess 102. Thus, in
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order to avoid double-counting, just as for the case of Z°/W™ production, section 8.4.2,
these subprocesses should not be switched on simultaneously. Process 111, qq — gh? is
different, in the sense that it proceeds through an s-channel gluon coupling to a heavy-
quark loop, and that therefore the emitted gluon is necessary in the final state in order to
conserve colours. It is not to be confused with a gluon-radiation correction to the Born-
level process 3, like in process 32, since processes 3 and 32 vanish for massless quarks while
process 111 is mainly intended for such. The lack of a matching Born-level process shows
up by process 111 being vanishing in the p, — 0 limit. Numerically it is of negligible
importance, except at very large p, values. Process 102, possibly augmented by 111,
should thus be used for inclusive production of Higgs, and 111-113 for the study of the
Higgs subsample with high transverse momentum.

A warning is that the matrix-element expressions for processes 111-113 are very
lengthy and the coding therefore more likely to contain some errors and numerical in-
stabilities than for most other processes. Therefore the full expressions are only available
by setting the non-default value MSTP(38)=0. Instead the default is based on the sim-
plified expressions obtainable if only the top quark contribution is considered, in the
my — oo limit [ElI88]. As a slight improvement, this expression is rescaled by the ratio
of the gg — h° cross sections (or, equivalently, the h — gg partial widths) of the full cal-
culation and that in the my — oo limit. Simple checks show that this approach normally
agrees with the full expressions to within ~ 20%, which is small compared with other
uncertainties. The agreement is worse for process 111 alone, about a factor of 2, but this
process is small anyway. We also note that the matrix element correction factors, used in
the initial-state parton shower for process 102, subsection 10.3.5, are based on the same
my — oo limit expressions, so that the high-p, tail of process 102 is well matched to the
simple description of process 112 and 113.

In ete™ annihilation, associated production of an h® with a Z°, process 24, is usually
the dominant one close to threshold, while the Z°Z° and W W~ fusion processes 123 and
124 win out at high energies. Process 103, vy fusion, may also be of interest, in particular
when the possibilities of beamstrahlung photons and backscattered photons are included
(see subsection 7.1.3). Process 110, which gives an h in association with a v, is a loop
process and is therefore suppressed in rate. It would have been of interest for a h® mass
above 60 GeV at LEP 1, since its phase space suppression there is less severe than for the
associated production with a Z°. Now it is not likely to be of any further interest.

The branching ratios of the Higgs are very strongly dependent on the mass. In prin-
ciple, the program is set up to calculate these correctly, as a function of the actual Higgs
mass, i.e. not just at the nominal mass. However, higher-order corrections may at times
be important and not fully unambiguous; see for instance MSTP (37).

Since the Higgs is a spin-0 particle it decays isotropically. In decay processes such
as h' — WHTW~/Z%Z° — 4 fermions angular correlations are included [Lin97]. Also in
processes 24 and 26, Z° and W* decay angular distributions are correctly taken into
account.

8.5.2 Heavy Standard Model Higgs

ISB= 5 729 - 1O
8 WTW- —h'

71 Z97° — Z°7° (longitudinal)

72 7Z°7° — W*W~ (longitudinal)

73 Z°WT — Z°WT (longitudinal)

76 WTW~ — Z°Z° (longitudinal)

77 WTW#* — WTW# (longitudinal)

Processes 5 and 8 are the simple 2 — 1 versions of what is now available in 123 and
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124 with the full 2 — 3 kinematics. For low Higgs masses processes 5 and 8 overestimate
the correct cross sections and should not be used, whereas good agreement between the
2 — 1 and 2 — 3 descriptions is observed when heavy Higgs production is studied.

The subprocesses 5 and 8, VV — h°, which contribute to the processes VV — V'V,
show a bad high-energy behaviour. Here V' denotes a longitudinal intermediate gauge
boson, Z° or W*. This can be cured only by the inclusion of all VV — V'V’ graphs, as
is done in subprocesses 71, 72, 73, 76 and 77. In particular, subprocesses 5 and 8 give
rise to a fictitious high-mass tail of the Higgs. If this tail is thrown away, however, the
agreement between the s-channel graphs only (subprocesses 5 and 8) and the full set of
graphs (subprocesses 71 etc.) is very good: for a Higgs of nominal mass 300 (800) GeV, a
cut at 600 (1200) GeV retains 95% (84%) of the total cross section, and differs from the
exact calculation, cut at the same values, by only 2% (11%) (numbers for SSC energies).
With this prescription there is therefore no need to use subprocesses 71 etc. rather than
subprocesses 5 and 8.

For subprocess 77, there is an option, see MSTP (45), to select the charge combination
of the scattering W's: like-sign, opposite-sign (relevant for Higgs), or both.

Process 77 contains a divergence for p; — 0 due to y-exchange contributions. This
leads to an infinite total cross section, which is entirely fictitious, since the simple parton-
distribution function approach to the longitudinal W flux is not appropriate in this limit.
For this process, it is therefore necessary to make use of a cut, e.g. p; > myw.

For subprocesses 71, 72, 76 and 77, an option is included (see MSTP(46)) whereby
you can select only the s-channel Higgs graph; this will then be essentially equivalent to
running subprocess 5 or 8 with the proper decay channels (i.e. Z°Z° or WTW™) set via
MDME. The difference is that the Breit-Wigners in subprocesses 5 and 8 contain a mass-
dependent width, whereas the width in subprocesses 71-77 is calculated at the nominal
Higgs mass; also, higher-order corrections to the widths are treated more accurately in
subprocesses 5 and 8. Further, processes 71-77 assume the incoming W/Z to be on the
mass shell, with associated kinematics factors, while processes 5 and 8 have W /Z correctly
space-like. All this leads to differences in the cross sections by up to a factor of 1.5.

In the absence of a Higgs, the sector of longitudinal Z and W scattering will become
strongly interacting at energies above 1 TeV. The models proposed by Dobado, Herrero
and Terron [Dob91] to describe this kind of physics have been included as alternative
matrix elements for subprocesses 71, 72, 73, 76 and 77, selectable by MSTP(46). From
the point of view of the general classification scheme for subprocesses, this kind of models
should appropriately be included as separate subprocesses with numbers above 100, but
the current solution allows a more efficient reuse of existing code. By a proper choice of
parameters, it is also here possible to simulate the production of a techni-p (see subsection
8.6.7).

Currently, the scattering of transverse gauge bosons has not been included, neither that
of mixed transverse—longitudinal scatterings. These are expected to be less important at
high energies, and do not contain an h® resonance peak, but need not be entirely negligible
in magnitude. As a rule of thumb, processes 71-77 should not be used for V'V invariant
masses below 500 GeV.

The decay products of the longitudinal gauge bosons are correctly distributed in angle.
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8.5.3 Extended neutral Higgs sector

MSEL = 19
ISUB= h° H° A°
3 151 156 fif; — X
102 152 157 gg— X
103 153 158 vy — X
111 183 188 qq— gX
112 184 189 qg — qX
113 185 190 gg— gX
24 171 176 ff; — Z°X

26 172 177 £f, — WX

123 173 178 £f, — G,X (ZZ fusion)
124 174 179 f£if; — X (WTW™ fusion)
121 181 186 gg — QuQ,X

122 182 187 q;q; — QeQuX

In PyTHIA, the particle content of a two-Higgs-doublet scenario is included: two
neutral scalar particles, 25 and 35, one pseudoscalar one, 36, and a charged doublet, +37.
(Of course, these particles may also be associated with corresponding Higgs states in
larger multiplets.) By convention, we choose to call the lighter scalar Higgs h® and the
heavier H. The pseudoscalar is called A° and the charged H*. Charged-Higgs production
is covered in section 8.5.4.

A number of h® processes have been duplicated for H° and A°. The correspondence
between ISUB numbers is shown in the table above: the first column of ISUB numbers
corresponds to X = h®, the second to X = H, and the third to X = A®. Note that several
of these processes are not expected to take place at all, owing to vanishing Born term
couplings. We have still included them for flexibility in simulating arbitrary couplings
at the Born or loop level, or for the case of mixing between the scalar and pseudoscalar
sectors.

A few Standard Model Higgs processes have no correspondence in the scheme above.
These include

e 5 and 8, which anyway have been superseded by 123 and 124;

e 71,72, 73,76 and 77, which deal with what happens if there is no light Higgs, and

o is a scenario complementary to the one above, where several light Higgs bosons
are assumed; and

e 110, which is mainly of interest in Standard Model Higgs searches.

The processes 111-113, 183-185 and 188-190 have only been worked out in full detail
for the Standard Model Higgs case, and not when e.g. squark loop contributions need be
considered. The approximate procedure outlined in subsection 8.5.1, based on combining
the kinematics shape from simple expressions in the m; — oo limit with a normalization
derived from the gg — X cross section, should therefore be viewed as a first ansatz only.
In particular, it is not recommended to try the non-default MSTP(38)=0 option, which is
incorrect beyond the Standard Model.

In processes 121, 122, 181, 182, 186 and 187 the recoiling heavy flavour is assumed to
be top, which is the only one of interest in the Standard Model, and the one where the
parton-distribution-function approach invoked in processes 3, 151 and 156 is least reliable.
However, it is possible to change the quark flavour in 121 etc.; for each process ISUB this
flavour is given by KFPR(ISUB,2). This may become relevant if couplings to bb states are
enhanced, e.g. if tan /3 > 1 in the MSSM. The matrix elements in this group are based
on scalar Higgs couplings; differences for a pseudoscalar Higgs remains to be worked out,
but are proportional to the heavy quark mass relative to other kinematic quantities.
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By default, the h® has the couplings of the Standard Model Higgs, while the H°
and A° have couplings set in PARU(171) - PARU(178) and PARU(181) - PARU(190),
respectively. The default values for the H° and A° have no deep physics motivation,
but are set just so that the program will not crash due to the absence of any couplings
whatsoever. You should therefore set the above couplings to your desired values if you
want to simulate either HY or A°. Also the couplings of the h° particle can be modified,
in PARU(161) - PARU(165), provided that MSTP(4) is set to 1.

For MSTP (4)=2, the mass of the h® (in PMAS(25,1)) and the tan 3 value (in PARU(141))
are used to derive the masses of the other Higgs bosons, as well as all Higgs couplings.
PMAS(35,1) - PMAS(37,1) and PARU(161) - PARU(195) are overwritten accordingly.
The relations used are the ones of the Born-level MSSM [Gun90]. Loop corrections to
those expressions have been calculated within specific supersymmetric scenarios, and are
known to have a non-negligible effects on the resulting phenomenology. By switching on
supersymmetry simulation and setting parameters appropriately, one will gain access to
these mass formulae, see section 9.5.

Note that not all combinations of my, and tan 3 are allowed; for MSTP(4)=2 the re-
quirement of a finite A mass imposes the constraint

tan? 3 — 1
< - 139
mn my, tanzﬁ n 17 ( )
or, equivalently,
tan? 3 > w (140)
Mz — Mhp

If this condition is not fulfilled, the program will crash.

A more realistic approach to the Higgs mass spectrum is to include radiative correc-
tions to the Higgs potential. Such a machinery has never been implemented as such in
PyTHIA, but appears as part of the Supersymmetry framework described in subsection 8.7.
At tree level, the minimal set of inputs would be IMSS(1)=1 to switch on SUSY, RMSS(5)
to set the tan 3 value (this overwrites the PARU(141) value when SUSY is switched on)
and RMSS(19) to set A mass. However, the significant radiative corrections depend on
the properties of all particles that couple to the Higgs boson, and the user may want to
change the default values of the relevant RMSS inputs. In practice, the most important
are those related indirectly to the physical masses of the third generation supersymmetric
quarks and the Higgsino: RMSS(10) to set the left-handed doublet SUSY mass parame-
ter, RMSS(11) to set the right stop mass parameter, RMSS(12) to set the right shottom
mass parameter, RMSS(4) to set the Higgsino mass and a portion of the squark mixing,
and RMSS(16) and RMSS(17) to set the stop and bottom trilinear couplings, respectively,
which specifies the remainder of the squark mixing. From these inputs, the Higgs masses
and couplings would be derived. Note that switching on SUSY also implies that Super-
symmetric decays of the Higgs particles become possible if kinematically allowed. If you
do not want this to happen, you may want to increase the SUSY mass parameters. (Use
CALL PYSTAT(2) after initialization to see the list of branching ratios.)

Pair production of Higgs states may be a relevant source, see section 8.5.5 below.

Finally, heavier Higgs bosons may decay into lighter ones, if kinematically allowed, in
processes like A® — Z%h% or HT — WTh°. Such modes are included as part of the general
mixture of decay channels, but they can be enhanced if the uninteresting channels are
switched off.

8.5.4 Charged Higgs sector

MSEL = 23 B
ISUB = 143 f;f; — HY
161 f,g — f,H'
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A charged Higgs doublet, H*, is included in the program. This doublet may be the
one predicted in the MSSM scenario, see section 8.5.3, or in any other scenario. The tan (3
parameter, which is relevant also for charged Higgs couplings, is set via PARU(141) or, if
Susy is switched on, via RMSS(5).

The basic subprocess for charged Higgs production in hadron colliders is ISUB = 143.
However, this process is dominated by tb — H*, and so depends on the choice of t parton
distribution, if at all present. A better representation is provided by subprocess 161,
fg — f'H*; i.e. actually bg — tHT. It is therefore recommended to use 161 and not 143;
to use both would be double-counting.

Pair production of Higgs states may be a relevant source, see section 8.5.5 below.

A major potential source of charged Higgs production is top decay. It is possible to
switch on the decay channel t — bH™. Top will then decay to H* a fraction of the time,
whichever way it is produced. The branching ratio is automatically calculated, based on
the tan 3 value and masses. It is possible to only have the Ht decay mode switched on,
in which case the cross section is reduced accordingly.

8.5.5 Higgs pairs

ISUB = (141) fif; — ~/7°/7"°
297 fzfj — HihO
300 f;f; — AHC
301 ff, — HTH-

The subprocesses 297-301 give the production of a pair of Higgs bosons via the s-
channel exchange of a v*/Z° or a W state.

Note that Higgs pair production is still possible through subprocess 141, as part of the
decay of a generic combination of v*/Z°/Z"°. Thus it can be used to simulate Z° — h°A°
and Z° — HOAO for associated neutral Higgs production. The fact that we here make use
of the Z° can easily be discounted, either by letting the relevant couplings vanish, or by
the option MSTP (44)=4.

Similarly the decay v*/Z°/Z"° — HTH~ allows the production of a pair of charged
Higgs particles. This process is especially important in eTe~ colliders. The coupling of
the v* to HYH™ is determined by the charge alone (neglecting loop effects), while the Z°
coupling is regulated by PARU(142), and that of the Z° by PARU(143). The Z° piece
can be switched off, e.g. by MSTP(44)=4. An ordinary Z°, i.e. particle code 23, cannot be
made to decay into a Higgs pair, however.

The advantage of the explicit pair production processes is the correct implementation
of the pair threshold.

8.6 Non-Standard Physics

The number of possible non-Standard Model scenarios is essentially infinite, but many of
the studied scenarios still share a lot of aspects. For instance, new W’ and 7' gauge bosons
can arise in a number of different ways. Therefore it still makes sense to try to cover a few
basic classes of particles, with enough freedom in couplings that many kinds of detailed
scenarios can be accommodated by suitable parameter choices. We have already seen one
example of this, in the extended Higgs sector above. In this section a few other kinds of
non-standard generic physics are discussed. Supersymmetry is covered separately in the
following section, since it is such a large sector by itself.
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8.6.1 Fourth-generation fermions

MSEL = 7, 8, 37, 38

ISUB = 1 fif; — ~*/Z°
2 ff; - W+
81 q;,q; — QﬁQk
82 gg — QrQy

83  qif; — Qufi

84 gy — QrQy

85 vy — FiFy
141 ff;, — fy/ZO/Z/O
142 fzfj — WH—

The prospects of a fourth generation currently seem rather dim, but the appropriate
flavour content is still found in the program. In fact, the fourth generation is included on
an equal basis with the first three, provided MSTP(1)=4. Also processes other than the
ones above can therefore be used, e.g. all other processes with gauge bosons, including
non-standard ones such as the Z°. We therefore do not repeat the descriptions found
elsewhere, e.g. how to set only the desired flavour in processes 81-85. Note that it may be
convenient to set CKIN(1) and other cuts such that the mass of produced gauge bosons
is enough for the wanted particle production — in principle the program will cope even
without that, but possibly at the expense of very slow execution.

8.6.2 New gauge bosons

MSEL = 21, 22, 24
ISUB = 141 ff, — fy/ZO/Z/O
142 fzfj — WH—

The Z"° of subprocess 141 contains the full v*/Z°/Z" interference structure for cou-
plings to fermion pairs. With MSTP(44) it is possible to pick only a subset, e.g. only the
pure Z° piece. The couplings of the Z" to quarks and leptons in the first generation can
be set via PARU(121) - PARU(128), in the second via PARJ(180) - PARJ(187) and in
the third via PARJ(188) - PARJ(195). The eight numbers correspond to the vector and
axial couplings of down-type quarks, up-type quarks, leptons and neutrinos, respectively.
The default corresponds to the same couplings as that of the Standard Model Z°, with
axial couplings af = +1 and vector couplings vy = a¢ — 4egsin?6y,. This implies a reso-
nance width that increases linearly with the mass. By a suitable choice of the parameters,
it is possible to simulate just about any imaginable Z”° scenario, with full interference ef-
fects in cross sections and decay angular distributions. Note that also the possibility of a
generation dependence has been included for the Z°, which is normally not the case.

The coupling to the decay channel Z° — WTW~ is regulated by PARU(129) -
PARU(130). The former gives the strength of the coupling, which determines the rate. The
default, PARU(129)=1., corresponds to the ‘extended gauge model’ of [Alt89], wherein the
Z° — WTW~ coupling is used, scaled down by a factor mi;/m2, to give a Z'° partial
width into this channel that again increases linearly. If this factor is cancelled, by having
PARU(129) proportional to m2, /m3,, one obtains a partial width that goes like the fifth
power of the Z" mass, the ‘reference model” of [Alt89]. In the decay angular distribution
one could imagine a much richer structure than is given by the one parameter PARU(130).

Other decay modes include Z"° — Z°h°, predicted in left-right symmetric models (see
PARU(145) and ref. [Coc91]), and a number of other Higgs decay channels, see sections
8.5.3 and 8.5.4.
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The W'# of subprocess 142 so far does not contain interference with the Standard
Model W* — in practice this should not be a major limitation. The couplings of the W’
to quarks and leptons are set via PARU(131) - PARU(134). Again one may set vector
and axial couplings freely, separately for the qq’ and the (v, decay channels. The defaults
correspond to the V' — A structure of the Standard Model W, but can be changed to
simulate a wide selection of models. One possible limitation is that the same Cabibbo—
Kobayashi-Maskawa quark mixing matrix is assumed as for the standard W.

The coupling W — Z°W can be set via PARU(135) - PARU(136). Further comments
on this channel as for Z'; in particular, default couplings again agree with the ‘extended
gauge model’” of [Alt89]. A W' — WhO channel is also included, in analogy with the
70 — 7°h° one, see PARU(146).

The R boson (particle code 41) of subprocess 144 represents one possible scenario for a
horizontal gauge boson, i.e. a gauge boson that couples between the generations, inducing
processes like sd — R® — p~e™. Experimental limits on flavour-changing neutral currents
forces such a boson to be fairly heavy. The model implemented is the one described in
[Ben8bal.

A further example of new gauge groups follows right after this.

8.6.3 Left—Right Symmetry and Doubly Charged Higgs Bosons

ISUB = 341 (i; — HF*

342 ity — HES

343 lyy — HiFeF

344 ly — HiFeT

345 Uy — HEEF

346 Ly — HES T

347 lyy — HitrT

348 Ly — HEETT

349 ff; —» HftH, -

350 ff; — HETHE™

351 fif; — fp fiHF= (WW fusion)

352 fif; — fp fiHs" (WW fusion)

353 ff; — 7Y,

354 ff; — W5

At current energies, the world is lefthanded, i.e. the Standard Model contains an

SU(2),, group. Left-right symmetry at some larger scale implies the need for an SU(2) g
group. Thus the particle content is expanded by righthanded Z% and Wﬁ and righthanded
neutrinos. The Higgs fields have to be in a triplet representation, leading to doubly-
charged Higgs particles, one set for each of the two SU(2) groups. Also the number of
neutral and singly-charged Higgs states is increased relative to the Standard Model, but a
search for the lowest-lying states of this kind is no different from e.g. the freedom already
accorded by the MSSM Higgs scenarios.

PyTHIA implements the scenario of [Hui97]. The expanded particle content with
default masses is:
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KF name m (GeV)

9900012  vpge 200
9900014 wvg, 200
9900016  vg, 200
9900023 7Y% 1200
9900024 W4 750
9900041 Hf* 200
9900042 HE* 200

The main decay modes implemented are

Hy " — WEWE, 65ef (i, generation indices); and

HET — WiWi, 60

The physics parameters of the scenario are found in PARP(181) - PARP(192).

The Wj%t has been implemented as a simple copy of the ordinary W, with the ex-
ception that it couple to righthanded neutrinos instead of the ordinary lefthanded ones.
Thus the standard CKM matrix is used in the quark sector, and the same vector and
axial coupling strengths, leaving only the mass as free parameter. The Z% implemen-
tation (without interference with + or the ordinary Z°) allows decays both to left- and
righthanded neutrinos, as well as other fermions, according to one specific model ansatz
[Fer00]. Obviously both the Wj%t and the ZY% descriptions are likely to be simplifications,
but provide a starting point.

The righthanded neutrinos can be allowed to decay further [Riz81, Fer00]. Assuming
them to have a mass below that of W}, they decay to three-body states via a virtual

Wi, vre — ¢+ and vge — (- Tf , where both choices are allowed owing to the Majorana
character of the neutrinos. If there is a significant mass splitting, also sequential decays
Vre — (50T gy are allowed. Currently the decays are isotropic in phase space. If the
neutrino masses are close to or above the Wg ones, this description has to be substituted
by a sequential decay via a real Wg (not implemented, but actually simpler to do than
the one here).

8.6.4 Leptoquarks

MSEL = 25
ISUB = 145 q;¢; — Lq
162 qg — (Lq

163 gg — LQEQ
164 qlqz — LQEQ
Several processes that can generate a leptoquark have been included. Currently only
one leptoquark has been implemented, as particle 42, denoted Lg. The leptoquark is
assumed to carry specific quark and lepton quantum numbers, by default u quark plus
electron. These flavour numbers are conserved, i.e. a process such as ue™ — Lq — dve
is not allowed. This may be a bit restrictive, but it represents one of many leptoquark
possibilities. The spin of the leptoquark is assumed to be zero, i.e. its decay is isotropic.
Although only one leptoquark is implemented, its flavours may be changed arbitrarily
to study the different possibilities. The flavours of the leptoquark are defined by the
quark and lepton flavours in the decay mode list. Since only one decay channel is allowed,
this means that the quark flavour is stored in KFDP(MDCY(42,2),1) and the lepton one
in KFDP(MDCY (42,2),2). The former must always be a quark, while the latter could
be a lepton or an antilepton; a charge-conjugate partner is automatically defined by the
program. At initialization, the charge is recalculated as a function of the flavours defined;
also the leptoquark name is redefined to be of the type *LQ-(q) (1) ’, where actual quark
(q9) and lepton (1) flavours are displayed.
The Lo — qf vertex contains an undetermined Yukawa coupling strength, which
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affects both the width of the leptoquark and the cross section for many of the production
graphs. This strength may be changed in PARU(151). The definition of PARU(151)
corresponds to the k factor of [Hew88], i.e. to A\?/(4m e ), where A is the Yukawa coupling
strength of [Wud86]. Note that PARU(151) is thus quadratic in the coupling.

The leptoquark is likely to be fairly long-lived, in which case it has time to fragment
into a mesonic- or baryonic-type state, which would decay later on. This is a bit tedious to
handle; therefore the leptoquark is always assumed to decay before fragmentation. This
may give some imperfections in the event generation, but should not be off by much in
the final analysis [Fri97].

Inside the program, the leptoquark is treated as a resonance. Since it carries colour,
some extra care is required. In particular, it is not allowed to put the leptoquark stable,
by modifying either MDCY(42,1) or MSTP(41): then the leptoquark would be handed
undecayed to PYTHIA, which would try to fragment it (as it does with any other coloured
object), and most likely crash.

8.6.5 Compositeness and anomalous couplings

ISUB= 20 ff; —yWT
165 ff; — fi.f). (via 7*/Z°)
166 flf] — fkfl (Via Wi)

Some processes have been set up to allow anomalous coupling to be introduced, in
addition to the Standard Model ones. These can be switched on by ITCM(5)> 1; the
default ITCM(5)=0 corresponds to the Standard Model behaviour.

In processes 381 and 382, the quark substructure is included in the left—left isoscalar
model [Eic84, Chi90] for ITCM(5)=1, with compositeness scale A given in RTCM(41) (de-
fault 1000 GeV) and sign n of interference term in RTCM(42) (default +1; only other
alternative —1). The above model assumes that only u and d quarks are composite (at
least at the scale studied); with ITCM(5)=2 compositeness terms are included in the inter-
actions between all quarks. When ITCM(5)=0, the two processes are equivalent with 11
and 12. A consistent set of high-p, jet production processes in compositeness scenarios
is thus obtained by combining 381 and 382 with 13, 28, 53 and 68.

The processes 165 and 166 are basically equivalent to 1 and 2, i.e. v*/Z° and W*
exchange, respectively, but a bit less fancy (no mass-dependent width etc.). The reason for
this duplication is that the resonance treatment formalism of processes 1 and 2 could not
easily be extended to include other than s-channel graphs. In processes 165 and 166, only
one final-state flavour is generated at the time; this flavour should be set in KFPR(165,1)
and KFPR(166,1), respectively. For process 166 one gives the down-type flavour, and
the program will associate the up-type flavour of the same generation. Defaults are
11 in both cases, i.e. ete” and e'v, (e"7,) final states. While ITCM(5)=0 gives the
Standard Model results, ITCM(5)=1 contains the left-left isoscalar model (which does not
affect process 166), and ITCM(5)=3 the helicity-non-conserving model (which affects both)
[Eic84, Lan91]. Both models above assume that only u and d quarks are composite; with
ITCM(5)= 2 or 4, respectively, contact terms are included for all quarks in the initial state.
Parameters are RTCM(41) and RTCM(42), as above.

Note that processes 165 and 166 are book-kept as 2 — 2 processes, while 1 and 2 are
2 — 1 ones. This means that the default Q? scale in parton distributions is p? for the
former and § for the latter. To make contact between the two, it is recommended to set
MSTP (32)=4, so as to use § as scale also for processes 165 and 166.

In process 20, for W~ pair production, it is possible to set an anomalous magnetic
moment for the W in RTCM(46) (=n =k — 1; where k = 1 is the Standard Model value).
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The production process is affected according to the formulae of [Sam91], while W decay
currently remains unaffected. It is necessary to set ITCM(5)=1 to enable this extension.

8.6.6 Excited fermions

ISUB = 146 ey —e*
147 dg — d*
148 ug — u*
167  qiq; — qd”
168  q;q; — qru*
169  q;q; — eeT

Compositeness scenarios may also give rise to sharp resonances of excited quarks and
leptons. An excited copy of the first generation is implemented, consisting of spin 1/2
particles d* (code 4000001), u* (4000002), e* (4000011) and v} (4000012).

The current implementation contains gauge interaction production by quark—gluon
fusion (processes 147 and 148) or lepton—photon fusion (process 146) and contact interac-
tion production by quark—quark or quark—antiquark scattering (processes 167-169) . The
couplings f, f" and f, to the SU(2), U(1) and SU(3) groups are stored in RTCM(43)
- RTCM(45), the scale parameter A in RTCM(41); you are also expected to change the
f* masses in accordance with what is desired — see [Bau90] for details on conventions.
Decay processes are of the types q* — qg, q* — q7v, q* — qZ° or q* — ¢'W¥, with the
latter three (two) available also for e* (vf). A non-trivial angular dependence is included
in the q* decay for processes 146-148, but has not been included for processes 167-169.
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8.6.7 Technicolor

MSEL = 50, 51

ISUB = 149 gg — . (obsolete)
191 f£f; — pY. (obsolete)
192 £;f; — p{. (obsolete)
193 f;f; — w? (obsolete)
194 f;f;, — f.f,
195 £f; — 6:f
361 ff, — W+Wg
362 f,f, — Wind
363 ff; — mim.
364 fif; — yml
365 fif; — v’y
366 £f — 2n,
367 ff; — 7070,
368 £,f, — Whnr
370 ff; — Wiz
371 fif; — Winl,
372 ff; — 7t Zd
373 fif; — wiEwl,
374 £if; — vy
375 fif; — 7207
376 fif; — WEr,
377 ff; — WEr',
381 q;q; — qiq
382 q;q; — kT,
383 q;q; — g8
384 fg — fig
385 gg — Ty
386 gg — gg
387 fif; — QkQ,
388 gg — QiQy

Technicolor (TC) is an alternative way to manifest the Higgs mechanism for giving
masses to the W and Z bosons using strong dynamics instead of weakly—coupled funda-
mental scalars. In TC, the breaking of a chiral symmetry in a new, strongly interacting
gauge theory generates the Goldstone bosons necessary for electroweak symmetry break-
ing. Thus three of the technipions assume the role of the longitudinal components of
the W and Z bosons, but other states can remain as separate particles depending on the
gauge group: technipions (7. ), technirhos (py), techniomegas (wy.), etc.

No fully-realistic model of strong electroweak—symmetry breaking has been found
so far, and some of the assumptions and simplifications used in model-building may
need to be discarded in the future. The processes represented here correspond to several
generations of development. Processes 149, 191, 192 and 193 should be considered obsolete
and superseded by the other processes 194, 195 and 361-377. The former processes are
kept for cross—checks and backward-compatibility. In section 8.5.2 it is discussed how
processes 71-77 can be used to simulate a scenario with techni-p resonances in longitudinal
gauge boson scattering.
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Process 149 describes the production of a spin—0 techni-n meson (particle code KF =
3000331), which is an electroweak singlet and a QCD colour octet. It is one of the possible
techni-7 particles; the name “techni-n” is not used universally in the literature. The
techni-n couples to ordinary fermions proportional to fermion mass. The dominant decay
mode is therefore tt, if kinematically allowed. An effective gg—coupling arises through
an anomaly, and is roughly comparable in size with that to bb. Techni-n production at
hadron colliders is therefore predominantly through gg fusion, as implemented in process
149. In topcolor—assisted technicolor (discussed below), particles like the techni-n should
not have a predominant coupling to t quarks. In this sense, the process is considered
obsolete.

(The following discussion borrows liberally from the introduction to Ref. [Lan99a]
with the author’s permission.) Modern technicolor models of dynamical electroweak
symmetry breaking require walking technicolor [Hol81] to prevent large flavor-changing
neutral currents and the assistance of topcolor (TC2) interactions that are strong near
1 TeV [Nam88, Hil95, Lan95] to provide the large mass of the top quark. Both additions
to the basic technicolor scenario [Wei79, Eic80] tend to require a large number Np of
technifermion doublets to make the f—function of walking technicolor small. They are
needed in TC2 to generate the hard masses of quarks and leptons, to induce the right
mixing between heavy and light quarks, and to break topcolor symmetry down to ordinary
color. A large number of techni-doublets implies a relatively low technihadron mass scale
[Lan89, Eic96|, set by the technipion decay constant Fr ~ F,./\/Np, where F, = 246
GeV.

The model adopted in PyYTHIA is the “Technicolor Straw Man Model” (TCSM)
[Lan99a, Lan02a]. The TCSM describes the phenomenology of color—singlet vector and
pseudoscalar technimesons and their interactions with SM particles. These technimesons
are expected to be the lowest-lying bound states of the lightest technifermion doublet,
(Ty,Tp), with components that transform under technicolor SU(Nt¢) as fundamentals,
but are QCD singlets; they have electric charges Qy and Qp = Qu — 1. The vector
technimesons form a spin-one isotriplet pi’o and an isosinglet wy.. Since techni-isospin is
likely to be a good approximate symmetry, pi. and wi. should be approximately mass—
degenerate. The pseudoscalars, or technipions, also comprise an isotriplet H O and an
isosinglet IIY. However, these are not mass elgenstates In this model, they are simple,
two-state mixtures of the longitudinal weak bosons W;5, Z9 — the true Goldstone bosons
of dynamical electroweak symmetry breaking in the limit that the SU(2)®U(1) couplings
g, ¢’ vanish — and mass-eigenstate pseudo-Goldstone technipions 7, 70 :

[Mic) = sinx [Wr) + cos x me) ; [TI) = cosx ' [me) +--+, (141)

where sin y = Fr/F, < 1, X' is another mixing angle and the ellipsis refer to other tech-
nipions needed to eliminate the TC anomaly from the 1Y chiral current. These massive
technipions are also expected to be approximately degenerate. However, there may be
appreciable 70— mixing [Eic96]. If that happens, the lightest neutral technipions are
ideally-mixed Ty Ty and TpTp bound states. To snnulate this effect, there are separate

factors Cro ., and Cro_., to weight the m. and 7 partial widths for gg decays.

Technlplon decays are induced mainly by extended technicolor (ETC) interactions
which couple them to quarks and leptons [Eic80]. These couplings are proportional to
fermion mass, except for the top quark, which has most of its mass generation through
TC2 interactions. Thus, there is no great preference for m. to decay to top quarks nor for
top quarks to decay into them. Also, because of anomaly cancellation, the constituents of
the isosinglet technipion 7 may include colored technifermions as well as color-singlets,
and it decays into a pair of gluons as well as heavy quarks. The relevant technipion

decay modes are m, — tb,cb,ub, ¢§, c¢d and 7Fv;; 70 — tt,bb, c¢, and 7H7; and
Y — gg, tt,bb, c¢, and 7777, In the numerlcal evaluation of these w1dths the running
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mass (see PYMRUN) is used, and all fermion pairs are considered as final states. The decay
7. — WTbb is also included, with the final state kinematics distributed according to
phase space (i.e. not weighted by the squared matrix element). The 7. couplings to
fermions can be weighted by parameters C., Cy, C; and C, depending on the heaviest
quark involved in the decay.

In the limit of vanishing gauge couplings ¢, ¢’ = 0, the pi. and wy. coupling to techni-

pions are:

pre — Il = cos? X (Teemie) + 2sin x cos x (Wpme) + sin? x (W Wp);
wie — eIl Il = cos® X (e TeeTee) + -+ - (142)

The pye — meme decay amplitude, then, is given simply by

M(pie(q) — Ta(p1)mB(P2)) = gp. Cap €(q) - (P1 — p2) (143)

where the technirho coupling a,,, = g2, /41 = 2.91(3/Ny¢) is scaled naively from QCD
(Nrc = 4 by default) and Cap = cos? x for Ty, siny cos x for 7 Wy, and sin? y for
Wy Wi.

Walking technicolor enhancements of technipion masses are assumed to close off the
channel wy. — Ty T (Which is not included) and to kinematically suppress the channels
Pre — TeTie and the isospin-violating wy. — memy. (Which are allowed with appropriate
choices of mass parameters). The rates for the isospin-violating decays wy. — 747p =
WiW., Wing, mtme are given by T'(wie — 7i7p) = |6 T(p), — mhing) where €,
is the isospin-violating pi.-wi. mixing. Taking the value 5% in analogy with QCD, this
decay mode is also dynamically suppressed (but is included). While a light technirho
can decay to Wym. or W, Wy, through TC dynamics, a light techniomega decays mainly
through electroweak dynamics, wy, — 70, 270, WEn{, etc., where Z and W may are
transversely polarized. Since sin® y < 1, the electroweak decays of pi. to the transverse
gauge bosons v, W, Z plus a technipion may be competitive with the open-channel strong
decays.

Note, the exact meaning of longitudinal or transverse polarizations only makes sense at
high energies, where the Goldstone equivalence theorem can be applied. At the moderate
energies considered in the TCSM, the decay products of the W and Z bosons are dis-
tributed according to phase space, regardless of their designation as longitudinal Wy, /7,
or ordinary transverse gauge bosons.

An effective Lagrangian for technivector interactions can be constructed [Lan99al,
exploiting gauge invariance, chiral symmetry, and angular momentum and parity con-
servation. For example, the lowest-dimensional operator mediating the decay wi.(q) —
Y(p) 7w (p2)) is (e/My) F,. - F, w0, where the mass parameter My is expected to be of
order several 100 GeV. This leads to the decay amplitude:

€cos X

Y e“”)‘peu(q)ez(pl)q,\plp ) (144)
1%

M(wie(gq) = (1) (pa)) =

Similar expressions exist for the other amplitudes involving different technivectors and/or
different gauge bosons [Lan99a], where the couplings are derived in the valence tech-
nifermion approximation [Eic96, Lan99]. In a similar fashion, decays to fermion-
antifermion pairs are included. These partial widths are typically small, but can have
important phenomenological consequences, such as narrow lepton-antilepton resonances
produced with electroweak strength.

Final states containing Standard Model particles and/or pseudo-Goldstone bosons
(technipions) can be produced at colliders through two mechanisms: technirho and tech-
niomega mixing with gauge bosons through a vector-dominance mechanisms, and anoma-
lies [Lan02] involving no techni-resonances. Processes 191, 192 and 193 are based on
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s-channel production of the respective resonance [Eic96] in the narrow width approxima-
tion. All decay modes implemented can be simulated separately or in combination, in the
standard fashion. These include pairs of fermions, of gauge bosons, of technipions, and
of mixtures of gauge bosons and technipions. Processes 194,195 and 361-377, instead,
include interference and a correct treatment of kinematic thresholds, both of which are
important effects, but also are limited to specific final states. Therefore, several processes
need to be simulated at once to determine the full effect of TC.

Process 194 is intended to more accurately represent the mixing between the v*, Z°, p?.
and w?, particles in the Drell-Yan process [Lan99]. Process 195 is the analogous charged
ehannel process including W* and pf mixing. By default, the final state fermions are e*e~
and e®v,, respectively. These can be changed through the parameters KFPR(194,1) and
KFPR(195,1), respectively (where the KFPR value should represent a charged fermion).

Processes 361-368 describe the pair production of technipions and gauge bosons
through p? /w?. resonances and anomaly contributions. Processes 370-377 describe pair
production through the pi resonance and anomalies. It is important to note that pro-
cesses 361,362,370,371,372 include final states with only longitudinally—polarized W
and Z bosons, whereas the others include final states with only transverse W and Z
bosons. Thus, all processes must be simulated to get the full effect of the TC model
under investigation. All processes 361-377 are obtained by MSEL=50.

Cross sections for neutral charged final states at virtuality /s are calculated using the
full 7% py—wie propagator matrix, Ag(s). With M3 = M2 —i/sy(s) and Ty (s) the
energy-dependent width for V = Z°, pi., wy, this matrix is the inverse of

s OM2 s }“,thc s }thc
0 s — S S
-1 o V4 Zptc Zwtc
Ay (s) = Sfpe Sfzpne Mit 0 ; (145)
Sf’ywtc szwtc 0 §— Mitc

with f,p. =&, frue = §(Qu +Qb), fzp. = & cot 20w, and fz.,, = —§ (Qu + Qp) tan Oy,

and { = \/a/a,, determining the strength of the kinetic mixing. Because of the off-
diagonal entries, the propagators resonate at mass values shifted from the nominal My,
values. Note that special care is taken in the limit of very heavy technivectors to reproduce
the canonical v*/Z* — 7 m;. couplings. Cross sections for charged final states require the

WE—pE matrix A,
2
—1 o §—= MW Sprtc
AL (s) = < 5 fWpee S_M;QF ) )
tc

where fyw,,. = &/(2sinfw).

By default, the TCSM Model has the parameters Npc= 4, sin y = é, Qu = é, Qp =
Qu—1= é, Cp, = C. = Cr= 1, Ci= myp/my, Cr, .= 3 4 C’Wo ——( C’Wo/_)gg s lepw] =
0.05, Fr = F,siny = 82 GeV, M;t—MO = M,,, —210Ge\/ M:t—MO = Mo
= 110 GeV, My = M, = 200 GeV The techmpartlele mass parameters are set through
the usual PMAS array. Parameters regulating production and decay rates are stored in the
RTCM array in PYTCSM.

In the original TCSM outlined above, the existence of top-color interactions only
affected the coupling of technipions to top quarks, which is a significant effect only for
higher masses. In general, however, TC2 requires some new and possibly light colored
particles. In most TC2 models, the existence of a large tt, but not bb, condensate and mass
is due to SU(3); ® U(1); gauge interactions which are strong near 1 TeV. The SU(3),
interaction is t—b symmetric while U(1); couplings are t-b asymmetric. There are weaker
SU(3)2 ® U(1)2 gauge interactions in which light quarks (and leptons) may [Hil95], or
may not [Chi96], participate. The two U(1)’s must be broken to weak hypercharge
U(1)y at an energy somewhat higher than 1 TeV by electroweak—singlet condensates.

(146)

158



The full phenomenology of even such a simple model can be quite complicated, and many
(possibly—unrealistic) simplifications are made to reduce the number of free parameters
[Lan02a]. Nonetheless, it is useful to have some benchmark to guide experimental searches.

The two TC2 SU(3)’s can be broken to their diagonal SU(3) subgroup by using
technicolor and U(1); interactions, both strong near 1 TeV. This can be explicitly ac-
complished [Lan95| using two electroweak doublets of technifermions, 77 = (Uy, D;)
and Ty = (U, Dy), which transform respectively as (3,1, Nr¢) and (1,3, Np¢) un-
der the two color groups and technicolor. The desired pattern of symmetry breaking
occurs if SU(Np¢) and U(1); interactions work together to induce electroweak and
SU(3)1 ® SU(3)2 non-invariant condensates (U;,U;g) and (D;;,D;g), (i, = 1,2). This
minimal TC2 scenario leads to a rich spectrum of color-nonsinglet states readily accessi-
ble in hadron collisions. The lowest-lying ones include eight “colorons”, Vg, the massive
gauge bosons of broken topcolor SU(3); four isosinglet pys formed from 7;7; and the
isosinglet pseudo-Goldstone technipions formed from T575. In this treatment, the isovec-
tor technipions are ignored, because they must be pair produced in pi.g decays, and such
decays are assumed to be kinematically suppressed.

The colorons are new fundamental particles with couplings to quarks. In standard
TC2 [Hil95], top and bottom quarks couple to SU(3); and the four light quarks to
SU(3)2. Because the SU(3); interaction is strong and acts exclusively on the third
generation, the residual Vg coupling can be enhanced for t and b quarks. The coupling
Jo = gecot s for t and b and g, = —g.tan 03 for u,d, c,s, where g, is the QCD coupling
and cot 03 is related to the original g; and gs couplings. In flavor—universal TC2 [Chi96]
all quarks couple to SU(3)y, not SU(3)3, so that colorons couple equally and strongly to
all flavors: ¢, = g.cot 03.

Assuming that techni—isospin is not badly broken by ETC interactions, the pi.g are
isosinglets labeled by the technifermion content and color index A: p?, pay, pib, pih,. The
first two of these states, p11 and peg, mix with Vg and g. The topcolor-breaking condensate,
(T Tor) # 0, causes them to also mix with pj3 and pjo. Technifermion condensation
also leads to a number of (pseudo)Goldstone boson technipions. The lightest technipions
are expected to be the isosinglet SU(3) octet and singlet T>T, states ma, and mo.

These technipions can decay into either fermion—antifermion pairs or two gluons;
presently, they are assumed to decay only into gluons. As noted, walking technicolor
enhancement of technipion masses very likely close off the pi.g — mi.m channels. Then
the pis decay into qq and gg. The rate for the former are proportional to the amount of
kinetic mixing, set by & = ¢¢/Gp.. Additionally, the pyy decays to gyt

The V3 colorons are expected to be considerably heavier than the pi.s, with mass in
the range 0.5-1 TeV. In both the standard and flavor-universal models, colorons couple
strongly to 777}, but with only strength g. to T575. Since relatively light technipions are
TyT; states, it is estimated that T'(Vy — meme) = O(a.) and T'(Vy — gme) = O(a?).
Therefore, these decay modes are ignored, so that the Vg decay rate is the sum over open

channels of )
. 2
T'(Vs — ola) = % (1 + ma) (s —4m2)? (147)

=

S

where o, = g2/4r.
The phenomenological effect of this techniparticle structure is to modify the gluon
propagator in ordinary QCD processes, because of mixing between the gluon, V3 and the

159



pres’s. The g-Vs—p11—paa—pia—p12 propagator is the inverse of the symmetric matrix
s 0 5&g 5&g 0 0
0 S — M%/g S épn S §p22 S £p12 S £p12/
s&g $&pn S — M% _M121,22 _M121,12 _M121,12'
D7 l(s) = , , , , . (148)
58 8&m My s—=Msz =M,y =My

2 2 2 2
0 $&p1s _M11,12 _M22,12 s — Mj, _M12,12'

2 2 2 2
O 8£p12/ _M11712/ _M22’12/ _M12712/ S — M12/

Here, M} = M2 —i/sTy(s) uses the energy—dependent widths of the octet vector bosons,
and the &, are proportional to §; and elements of matrices that describe the pattern of
technifermion condensation. The mixing terms M} ;,;, induced by T1T5 condensation are
assumed to be real.

This extension of the TCSM is still under development, and any results should be
carefully scrutinized. The main effects are indirect, in that they modify the underly-
ing two-parton QCD processes much like compositeness terms, except that a resonant
structure are visible. Similar to compositeness, the effects of these colored technihadrons
are simulated by setting ITCM(5)=5 for processes 381-388. By default, these processes
are equivalent to the 11, 12, 13, 28, 53, 68, 81 and 82 ones, respectively. The last two
are specific for heavy-flavour production, while the first six could be used to describe
standard or non-standard high-p, jet production. These six are simulated by MSEL=51.
The parameter dependence of the ‘model’ is encoded in tanf3; (RTCM(21)) and a mass
parameter Mg (RTCM(27)), which determines the decay width pyy — gmey analogously
to My for wy — yme. For ITCM(2) equal to 0 (1), the standard (flavor universal) TC2
couplings are used. The mass parameters are set by the PMAS array using the codes: Vg
(3100021), 7, (3100111), 78, (3200111), p1; (3100113), p1o (3200113), poy (3300113), and
p22 (3400113). The mixing parameters M;; ; take on the (arbitrary) values Miq 2 = 100
GeV, M11712 = M11721 = M22712 = 150 GeV, M22721 =75 GeV and M12721 =50 GeV, while
the kinetic mixing terms ,,; are calculated assuming the technicolor condensates are fully
mixed, i.e. (T;T};) oc 1/1/2.

8.6.8 Extra Dimensions

ISUB = 391 ff — G*

392 gg— G*

393 qq — gG*
394 qg — qG*
395 gg — gG*

In recent years, the area of observable consequences of extra dimensions has attracted
a strong interest. The field is still in rapid development, so there still does not exist a
‘standard phenomenology’. The topic is also fairly new in PYTHIA, and currently only a
first scenario is available.

The G*, introduced as new particle code 5000039, is intended to represent the lowest
excited graviton state in a Randall-Sundrum scenario [Ran99] of extra dimensions. The
lowest-order production processes by fermion or gluon fusion are found in 391 and 392.
The further processes 393-395 are intended for the high-p, tail in hadron colliders. As
usual, it would be double-counting to have both sets of processes switched on at the same
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time. Processes 391 and 392, with initial-state showers switched on, are appropriate for
the full cross section at all p; values, and gives a reasonable description also of the high-p
tail. Processes 393-395 could be useful e.g. for the study of invisible decays of the G*,
where a large p, imbalance would be required. It also serves to test/confirm the shower
expectations of different p, spectra for different production processes [Bij01].

Decay channels of the G* to ff, gg, vy, Z°Z° and WHW~ contribute to the total
width. The correct angular distributions are included for decays to a fermion pair in the
lowest-order processes, whereas other decays currently are taken to be isotropic.

The G* mass is to be considered a free parameter. The other degree of freedom in this
scenario is a dimensionless coupling, see PARP (50).

8.7 Supersymmetry

MSEL = 39-45
ISUB = 201-296 (see tables at the beginning of this chapter)

PyTHIA includes the possibility of simulating a large variety of production and decay
processes in the Minimal Supersymmetric extension of the Standard Model (MSSM). The
simulation is based on an effective Lagrangian of softly-broken SUSY with parameters
defined at the weak scale, typically between myz and 1 TeV. The relevant parameters
should either be supplied directly by the user or they should be read in from a SUSY
Les Houches Accord spectrum file (see below). Some other possibilities for obtaining the
SUSY parameters also exist in the code, as described below, but these are only intended
for backwards compatibility and debugging purposes.

8.7.1 General Introduction

In any (N = 1) supersymmetric version of the SM there exists a partner to each SM
state with the same gauge quantum numbers but whose spin differs by one half unit.
Additionally, the dual requirements of generating masses for up— and down—type fermions
while preserving SUSY and gauge invariance, require that the SM Higgs sector be enlarged
to two scalar doublets, with corresponding spin-partners.

After Electroweak symmetry breaking (EWSB), the bosonic Higgs sector contains a
quintet of physical states: two CP—even scalars, h’ and H°, one CP-odd pseudoscalar,
A% and a pair of charged scalar Higgs bosons, H* (naturally, this classification is only
correct when CP violation is absent in the Higgs sector. Non—trivial phases between
certain soft—breaking parameters will induce mixing between the CP eigenstates). The
fermionic Higgs (called “Higgsino”) sector is constituted by the superpartners of these
fields, but these are not normally exact mass eigenstates, so we temporarily postpone the
discussion of them.

In the gauge sector, the spin-1/2 partners of the U(1)y and SU(2)y, gauge bosons
(called “gauginos”) are the Bino, B, the neutral Wino, W3, and the charged Winos, W1
and W, while the partner of the gluon is the gluino, g. After EWSB, the B and W,
mix with the neutral Higgsinos, Hl,Hz, to form four neutral Majorana fermion mass-
eigenstates, the neutralinos, ! _,. In addition, the charged Higgsinos, H*, mix with the
charged Winos, Wy and Ws, resulting in two charged Dirac fermion mass eigenstates, the
charginos, )21%2- Note that the 4 and Z, which sometimes occur in the literature, are linear
combinations of the B and W, by exact analogy with the mixing giving the v and Z°, but
these are not normally mass eigenstates after EWSB, due to the enlarged mixing caused
by the presence of the Higgsinos.

The spin—0 partners of the SM fermions (so-called “scalar fermions”, or “sfermions”)

are the squarks q, sleptons g, and sneutrinos 7. Each fermion (except the neutrinos) has
two scalar partners, one associated with each of its chirality states. These are named
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left—-handed and right—handed sfermions, respectively. Due to their scalar nature, it is
of course impossible for these particles to possess any intrinsic “handedness” themselves,
but they inherit their couplings to the gauge sector from their SM partners, so that e.g.
a dg does not couple to SU(2)y, while a d;, does.

Generically, the KF code numbering scheme used in PYTHIA reflects the relationship be-
tween particle and sparticle, so that e.g. for sfermions, the left—-handed (right—-handed) su-
perpartners have codes 1000000 (2000000) plus the code of the corresponding SM fermion.
A complete list of the particle partners and their KF codes is given in Table 13. Note that,
at times, antiparticles of scalar particles are denoted by *, i.e. t* rather than the more

correct but cumbersome t or t.

The MSSM Lagrangian contains interactions between particles and sparticles, with
couplings fixed by SUSY. There are also a number of soft SUSY-breaking mass param-
eters. “Soft” here means that they break the mass degeneracy between SM particles
and their SUSY partners without reintroducing quadratic divergences in the theory or
destroying its gauge invariance. In the MSSM, the soft SUSY-breaking parameters are
extra mass terms for gauginos and sfermions and trilinear scalar couplings. Further soft
terms may arise, for instance in models with broken R-parity, but we here restrict our
attention to the minimal case.

The exact number of independent parameters depends on the detailed mechanism
of SUSY breaking. The general MSSM model in PYTHIA assumes only a few relations
between these parameters which seem theoretically difficult to avoid. Thus, the first two
generations of sfermions with otherwise similar quantum numbers, e.g. d;, and sy, have the
same masses. Despite such simplifications, there are a fairly large number of parameters
that appear in the SUSY Lagrangian and determine the physical masses and interactions
with Standard Model particles, though far less than the > 100 which are allowed in all
generality. The Lagrangian (and, hence, Feynman rules) follows the conventions set down
by Kane and Haber in their Physics Report article [Hab85] and the papers of Gunion
and Haber [Gun86a]. Once the parameters of the softly-broken SUSY Lagrangian are
specified, the interactions are fixed, and the sparticle masses can be calculated.

8.7.2 Extended Higgs Sector

PyTHIA already simulates a Two Higgs Doublet Model (2HDM) obeying tree-level re-
lations fixed by two parameters, which are conveniently taken as the ratio of doublet
vacuum expectation values tan (3, and the pseudoscalar mass M,. The Higgs particles
are considered Standard Model fields, since a 2HDM is a straightforward extension of the
Standard Model. The MSSM Higgs sector is more complicated than that described above
in subsection 8.5, and includes important radiative corrections to the tree—level relations.
The CP-even Higgs mixing angle « is shifted as well as the full Higgs mass spectrum. The
properties of the radiatively—corrected Higgs sector in PYTHIA are derived in the effective
potential approach [Car95]. The effective potential contains an all-orders resummation
of the most important radiative corrections, but makes approximations to the virtuality
of internal propagators. This is to be contrasted with the diagrammatic technique, which
performs a fixed—order calculation without approximating propagators. In practice, both
techniques can be systematically corrected for their respective approximations, so that
there is good agreement between their predictions, though sometimes the agreement oc-
curs for slightly different values of SUSY-breaking parameters. The description of Higgs
properties in PYTHIA is based on the same FORTRAN code as in HDecay [Djo97], except that
certain corrections that are particularly important at large values of tan 3 are included in
PYTHIA.

There are several notable properties of the MSSM Higgs sector. As long as the soft
SUSY-breaking parameters are less than about 1.5 TeV, a number which represents a fair,
albeit subjective, limit for where the required degree of fine-tuning of MSSM parameters
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becomes unacceptably large, there is an upper bound of about 135 GeV on the mass of
the CP—even Higgs boson most like the Standard Model one, i.e. the one with the largest
couplings to the W and Z bosons, be it the h or H. If it is h that is the SM-like Higgs
boson, then H can be significantly heavier. On the other hand, if H is the SM-like Higgs
boson, then h must be even lighter. If all SUSY particles are heavy, but M4 is small, then
the low—energy theory would look like a two—Higgs—doublet model. For sufficiently large
M 4, the heavy Higgs doublet decouples, and the effective low—energy theory has only one
light Higgs doublet with SM-like couplings to gauge bosons and fermions.

The Standard Model fermion masses are not fixed by SUSY, but their Yukawa
couplings become a function of tanf. For the up— and down—quark and leptons,
m, = hyvsin 8, mq = hgvcos 3, and my = hyvcos 3, where hy—, q, is the correspond-
ing Yukawa coupling and v =~ 246 GeV is the order parameter of Electroweak symmetry
breaking. At large tan 3, significant corrections can occur to these relations. These are
included for the b quark, which appears to have the most sensitivity to them, and the t
quark. The array values RMSS(40) and RMSS(41) are used for temporary storage of the
corrections Amy and Amy,. PYPOLE, based on the updated version of SubHpole, written by
Carena et al. [Car95], also includes some bug fixes, so that it is generally better behaved.

The input parameters that determine the MSSM Higgs sector in PYTHIA are RMSS(5)
(tan 3), RMSS(19) (M), RMSS(10-12) (the third generation squark mass parameters),
RMSS(15-16) (the third generation squark trilinear couplings), and RMSS (4) (the Higgsino
mass p). Additionally, the large tan 3 corrections related to the b Yukawa coupling depend
on RMSS(3) (the gluino mass). Of course, these calculations also depend on SM parameters
(my, myz, ag, etc.). Any modifications to these quantities from virtual MSSM effects are
not taken into account. In principle, the sparticle masses also acquire loop corrections
that depend on all MSSM masses.

See section 8.7.5 for a description how to use the loop-improved RGE’s of ISASUSY to
determine the SUSY mass and mixing spectrum (including also loop corrections to the
Higgs mass spectrum and couplings) with PYTHIA.

If IMSS(4)=0, an approximate version of the effective potential calculation can be used.
It is not as accurate as that available for IMSS(4)=1, but it useful for demonstrating the
effects of higher orders. Alternatively, for IMSS(4)=2, the physical Higgs masses are set
by their PMAS values while the CP-even Higgs boson mixing angle « is set by RMSS(18).
These values and tan 3 (RMSS(5)) are enough to determine the couplings, provided that
the same tree-level relations are used.

8.7.3 Superpartners of Gauge and Higgs Bosons

The chargino and neutralino masses and their mixing angles (that is, their gaugino and
Higgsino composition) are determined by the SM gauge boson masses (My and My),
tan (3, two soft SUSY—breaking parameters (the SU(2)r, gaugino mass M, and the U(1)y
gaugino mass M), together with the Higgsino mass parameter pu, all evaluated at the
electroweak scale ~ My. PYTHIA assumes that the input parameters are evaluated at the
“correct” scale. Obviously, more care is needed to set precise experimental limits or to
make a connection to higher—order calculations.

Explicit solutions of the chargino and neutralino masses and their mixing angles (which
appear in Feynman rules) are found by diagonalizing the 2 x 2 chargino M¢ and 4 x 4
neutralino My mass matrices:

M. V2Mysf (M, Z

(M, 0\ (0 —uN ., [ —MzcBsw MysBsw
Mi_( 0 Mg)’M“_(—,u 0 )’Z_( MycBew —Mzsﬁcw)
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Mg is written in the (W™, HT) basis, My in the (B, W?3, H;, H,) basis, with the notation
s = sinf3,¢f = cos 3, sy = sinfy and cy = cosfy,. Different sign conventions and
bases sometimes appear in the literature. In particular, PYTHIA agrees with the ISASUSY
[Bae93] convention for p, but uses a different basis of fields and has different-looking
mixing matrices.

In general, the soft SUSY-breaking parameters can be complex valued, resulting in
CP violation in some sector of the theory, but more directly expanding the possible
masses and mixings of sparticles. Presently, the consequences of arbitrary phases are only
considered in the chargino and neutralino sector, though it is well known that they can
have a significant impact on the Higgs sector. A generalization of the Higgs sector is
among the plans for the future development of the program. The chargino and neutralino
input parameters are RMSS(5) (tan 3), RMSS(1) (the modulus of M;) and RMSS(30) (the
phase of M;), RMSS(2) and RMSS(31) (the modulus and phase of M,), and RMSS(4) and
RMSS(33) (the modulus and phase of u). To simulate the case of real parameters (which
is CP—conserving), the phases are zeroed by default. In addition, the moduli parameters
can be signed, to make a simpler connection to the CP—conserving case. (For example,
RMSS(5)=-100.0 and RMSS(30)=0.0 represents u = —100 GeV.)

The expressions for the production cross sections and decay widths of neutralino and
chargino pairs contain the phase dependence, but ignore possible effects of the phases
in the sfermion masses appearing in propagators. The production cross sections have
been updated to include the dependence on beam polarization through the parameters
PARJ(131,132) (see Sect. 8.8). There are several approximations made for three-body
decays. The numerical expressions for three-body decay widths ignore the effects of
finite fermion masses in the matrix element, but include them in the phase space. No
three-body decays x{ — ttx9 are simulated, nor x;(xj) — tbx}(x; ). Finally, the effects
of mixing between the third generation interaction and mass eigenstates for sfermions is
ignored, except that the physical sfermion masses are used. The kinematic distributions of
the decay products are spin—averaged, but include the correct matrix—element weighting.
Note that for the R—parity violating decays (see below), both sfermion mixing effects and
masses of b, t, and 7 are fully included.

Since the SU(3)¢ symmetry of the SM is not broken, the gluinos have masses deter-
mined by the SU(3)c gaugino mass parameter Ms, input through the parameter RMSS(3).
The physical gluino mass is shifted from the value of the gluino mass parameter M3 be-
cause of radiative corrections. As a result, there is an indirect dependence on the squark
masses. Nonetheless, it is sometimes convenient to input the physical gluino mass, as-
suming that there is some choice of M3 which would be shifted to this value. This can
be accomplished through the input parameter IMSS(3). A phase for the gluino mass can
be set using RMSS(32), and this can influence the gluino decay width (but no effect is
included in the g + X production). Three-body decays of the gluino to tt and bb and
tb plus the appropriate neutralino or chargino are allowed and include the full effects of
sfermion mixing. However, they do not include the effects of phases arising from complex
neutralino or chargino parameters.

There is one exception to the above discussion about the input parameters to the
neutralino and chargino mass matrices. In the case when M5 is much smaller than other
mass parameters (as occurs in models of anomaly—mediated SUSY breaking), radiative
corrections are very important in keeping the lightest neutralino lighter than the lightest
chargino. If ever the opposite occurs in solving the eigenvalue problem numerically, the
chargino mass is set to the neutralino mass plus 2 times the charged pion mass, thus
allowing the decay Yi — m*x}.
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8.7.4 Superpartners of Standard Model Fermions

The mass eigenstates of squarks and sleptons are, in principle, mixtures of their left— and
right-handed components, given by:

M} =mj+m}+ Dy M; =mi+mji+Dj, (150)
where my are soft SUSY-breaking parameters for superpartners of SU(2)y, doublets, and
my are parameters for singlets. The D-terms associated with Electroweak symmetry
breaking are Df = M3 cos(26)(Ts, — Qf sin? ) and Df, = M2 cos(23)Q; sin? Oy,
where T3, is the weak isospin eigenvalue (= £1/2) of the fermion and @ is the electric

charge. Taking the D—terms into account, one easily sees that the masses of sfermions in

SU(2)y, doublets are related by a sum rule: M%L,ngl/Q — M%L,T3=71/2 = M2 cos(23).

In many high—energy models, the soft SUSY-breaking sfermion mass parameters are
taken to be equal at the high—energy scale, but, in principle, they can be different for each
generation or even within a generation. However, the sfermion flavor dependence can have
important effects on low—energy observables, and it is often strongly constrained. The
suppression of flavor changing neutral currents (FCNC’s), such as K — 7°vp, requires
that either (i) the squark soft SUSY-breaking mass matrix is diagonal and degenerate,
or (ii) the masses of the first— and second—generation sfermions are very large. Thus we
make the data—motivated simplification of setting My, = M, , M&L = My Mz,
MaR - MgR.

The left-right sfermion mixing is determined by the product of soft SUSY-breaking
parameters and the mass of the corresponding fermion. Unless the soft SUSY-breaking
parameters for the first two generations are orders of magnitude greater than for the third
generation, the mixing in the first two generations can be neglected. This simplifying
assumption is also made in PYTHIA: the sfermions q g, with q = 1,d, ¢, s, and 1 g, 7,
with £ = e, y1, are the real mass eigenstates with masses mg, ,, and Mg, s My respectively.
For the third generation sfermions, due to weaker experimental constraints, the left-right
mixing can be nontrivial. The tree-level mass matrix for the top squarks (stops) in the
(tz,tr) basis is given by

Sr R

2 2
2 _ [ Mo, Tmg+ Dy, my(Ag — 1/ tan 3)
Mt < mt(At — M/ tanﬁ) m%]?) + mg + DER > (151)

where Ay is a trilinear coupling. Different sign conventions for A; occur in the literature;
PyTHIA and ISASUSY use opposite signs. Unless there is a cancellation between A; and
p/ tan 3, left-right mixing occurs for the stop squarks because of the large top quark
mass. The stop mass eigenstates are then given by

t, = cosf; t; +sinb; tp
t, = —sinf; t; +cosb; tg, (152)
where the masses and mixing angle 6; are fixed by diagonalizing the squared-mass matrix
Eq. (151). Note that different conventions exist also for the mixing angle 6;, and that
PYTHIA here agrees with ISASUSY. When translating Feynman rules from the (I,R) to
(1,2) basis, we use:
t, = cos 6; t; — sin 6; to
tg = sin6; t; + cosb; to. (153)

Because of the large mixing, the lightest stop t; can be one of the lightest sparticles.
For the sbottom, an analogous formula for the mass matrix holds with my, — mp,,
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At — Ab, DEL,R
mo, — Mry, My, — Mp,, Ay — Ar, Dy, . — Dz, o my — m; and tan — 1/tan § are
appropriate. The parameters A, Ay, and A, can be independent, or they might be
related by some underlying principle. When my, tan 5 or m, tan 3 is large (O(my)), left—
right mixing can also become relevant for the sbottom and stau.

Most of the SUSY input parameters are needed to specify the properties of the
sfermions. As mentioned earlier, the effects of mixing between the interaction and mass
eigenstates are assumed negligible for the first two generations. Furthermore, sleptons
and squarks are treated slightly differently. The physical slepton masses ¢;, and {r are set
by RMSS(6) and RMSS(7). By default, the 7 mixing is set by the parameters RMSS(13),
RMSS(14) and RMSS(17), which represent M;,, Mg, and A., respectively, i.e. neither
D—terms nor m. is included. However, for IMSS(8)=1, the 7 masses will follow the same
pattern as for the first two generations. Previously, it was assumed that the soft SUSY-
breaking parameters associated with the stau included D—terms. This is no longer the
case, and is more consistent with the treatment of the stop and sbottom. For the first two
generations of squarks, the parameters RMSS(8) and RMSS(9) are the mass parameters
mg and my, i.e. without D-terms included. For more generality, the choice IMSS(9)=1
means that my for Gy is set instead by RMSS(22), while m; for dg is RMSS(9). Note that
the left—-handed squark mass parameters must have the same value since they reside in
the same SU(2)y, doublet. For the third generation, the parameters RMSS(10), RMSS(11),
RMSS(12), RMSS(15) and RMSS(16) represent My,, Mp,, My,, Ay, and A, respectively.

There is added flexibility in the treatment of stops, sbottoms and staus. With the
flag IMSS(5) =1, the properties of the third generation sparticles can be specified by their
mixing angle and mass eigenvalues (instead of being derived from the soft SUSY-breaking
parameters). The parameters RMSS(26) - RMSS(28) specify the mixing angle (in radians)
for the sbottom, stop, and stau. The parameters RMSS(10) - RMSS(14) specify the two
stop masses, the one sbottom mass (the other being fixed by the other parameters) and
the two stau masses. Note that the masses RMSS(10) and RMSS(13) correspond to the
left-left entries of the diagonalized matrices, while RMSS(11), RMSS(12) and RMSS(14)
correspond to the right-right entries. These entries need not be ordered in mass.

— DBL,R’ my — my, and tan § — 1/ tan 3. For the stau, the substitutions

8.7.5 Models

At present, the exact mechanism of SUSY breaking is unknown. It is generally assumed
that the breaking occurs spontaneously in a set of fields that are almost entirely discon-
nected from the fields of the MSSM; if SUSY is broken explicitly in the MSSM, then
some superpartners must be lighter than the corresponding Standard Model particle, a
phenomenological disaster. The breaking of SUSY in this “hidden sector” is then commu-
nicated to the MSSM fields through one or several mechanisms: gravitational interactions,
gauge interactions, anomalies, etc. While any one of these may dominate, it is also possible
that all contribute at once.

We may parametrize our ignorance of the exact mechanism of SUSY breaking by
simply setting each of the soft SUSY breaking parameters in the Lagrangian by hand. In
PYTHIA this approach can be effected by setting IMSS (1) =1, although some simplifications
have already been made to greatly reduce the number of parameters from the initial more
than 100.

As to specific models, several exist which predict the rich set of measurable mass and
mixing parameters from the assumed soft SUSY breaking scenario with a much smaller
set of free parameters. One example is Supergravity (SUGRA) inspired models, where
the number of free parameters is reduced by imposing universality at some high scale,
motivated by the apparent unification of gauge couplings. Five parameters fixed at the
gauge coupling unification scale, tan 3, My, m1 /2, Ao, and sign(y), are then related to the
mass parameters at the scale of Electroweak symmetry breaking by renormalization group
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equations (see e.g. [Pie97]).

The user who wants to study this and other models in detail can use spectrum calcu-
lation programs (e.g. ISASUSY [Bae93], SOFTsusy [All02], SPHENO [Por(03], or SUSPECT
[Djo02]), which numerically solve the renormalization group equations (RGE) to deter-
mine the mass and mixing parameters at the weak scale. These may then be input to
PyTHIA via a SUSY Les Houches Accord spectrum file [Ska03] using IMSS(1)=11 and
IMSS(21)= the unit number where the spectrum file has been opened. All of PYTHIA’s
own internal mSUGRA machinery (see below) is then switched off. This means that none
of the other IMSS switches can be used, except for IMSS(51:53) (R-parity violation),
IMSS(10) (force x2 — X17), and IMSS(11) (gravitino is the LSP). Note that the depen-
dence of the b and t quark Yukawa couplings on tan # and the gluino mass is at present
ignored when using IMSS(1)=11.

As an alternative, a run-time interface to ISASUSY can be accessed by the option
IMSS(1)=12, in which case the SUGRA routine of ISASUSY is called by PYINIT. This routine
then calculates the mSUGRA spectrum of SUSY masses and mixings (CP conservation,
i.e. real-valued parameters, is assumed) and passes the information run-time rather than
in a file. The mSUGRA model input parameters should be given in RMSS as for IMSS(1)=2,
i.e.: RMSS(1)= M /5, RMSS(4)= sign(u), RMSS(5) = tan 3, RMSS(8) = M), and RMSS (16) =
Ap. The routine PYSUGI handles the conversion between the conventions of PYTHIA and
IsAsusy, so that conventions are self-consistent inside PYTHIA. In the call to PYSUGI, the
RMSS array is filled with the values produced by ISASUSY as for IMSS(1)=1. In particular,
this means that the mSUGRA input parameters mentioned above will be overwritten.
Cross sections and decay widths are then calculated by PyTHIA. Since PYTHIA cannot
always be expected to be linked with ISAJET, a dummy routine and a dummy function
have been added to the PYTHIA source. These are SUBROUTINE SUGRA and FUNCTION
VISAJE. These must first be given other names and PYTHIA recompiled before proper
linking with ISAJET can be achieved.

A problem is that the size of some ISASUSY common blocks has been expanded in more
recent versions. Thus, starting with version 7.61 of that program, the SSPAR common
block has been augmented by 3 real-valued numbers, and the SUGPAS common block has
been enlarged by 1 integer and 1 real-valued number. From version 7.67 on, the SSPAR
common block is expanded by a further three numbers and the GSS array in SUGMG by two.
Corresponding changes have been implemented in the PYSUGI interface routine. PYTHIA
thus now assumes the SSPAR, SUGPAS and SUGMG common blocks to have the forms:

COMMON/SSPAR/AMGLSS , AMULSS , AMURSS , AMDLSS , AMDRSS, AMSLSS
$,AMSRSS, AMCLSS, AMCRSS, AMBLSS, AMBRSS, AMB1SS, AMB2SS
$,AMTLSS, AMTRSS, AMT1SS, AMT2SS, AMELSS, AMERSS, AMMLSS , AMMRSS
$,AMLLSS, AMLRSS, AML.1SS, AML.2SS, AMN1SS, AMN2SS, AMN3SS
$,TWOM1,RV2V1,AMZ1SS, AMZ2SS, AMZ3SS, AMZ4SS, ZMIXSS(4,4)
$,AMW1SS, AMW2SS
$,GAMMAL , GAMMAR , AMHL , AMHH , AMHA , AMHC , ALFAH, AAT, THETAT
$,AAB,THETAB, AAL, THETAL , AMGVSS,MTQ,MBQ,MLQ,FBMA,
$vuQ, vDQ

REAL AMGLSS, AMULSS, AMURSS, AMDLSS, AMDRSS, AMSLSS
$, AMSRSS, AMCLSS, AMCRSS, AMBLSS, AMBRSS, AMB1SS, AMB2SS
$,AMTLSS, AMTRSS, AMT1SS, AMT2SS, AMELSS, AMERSS, AMMLSS , AMMRSS
$,AMLLSS,AMLRSS, AML1SS, AML2SS, AMN1SS, AMN2SS, AMN3SS
$,TWOM1,RV2V1,AMZ1SS,AMZ2SS,AMZ3SS, AMZ4SS , ZMIXSS
$,AMW1SS, AMW2SS
$,GAMMAL , GAMMAR , AMHL , AMHH , AMHA , AMHC , ALFAH, AAT, THETAT
$,AAB,THETAB, AAL, THETAL, AMGVSS,MTQ,MBQ,MLQ,FBMA, VUQ, VDQ

COMMON /SUGPAS/ XTANB,MSUSY,AMT,MGUT,MU,G2,GP,V,VP,XW,
$A1MZ,A2MZ,ASMZ ,FTAMZ ,FBMZ,B,SIN2B,FTMT,G3MT,VEV,HIGFRZ,
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$FNMZ , AMNRMJ,NOGOOD, TAL3UN, ITACHY ,MHPNEG, ASM3

REAL XTANB,MSUSY, AMT,MGUT,MU,G2,GP,V,VP,XW,
$A1MZ,A2MZ ,ASMZ ,FTAMZ ,FBMZ,B,SIN2B,FTMT,G3MT, VEV,HIGFRZ,
$FNMZ , AMNRMJ, ASM3

INTEGER NOGOOD, IAL3UN, ITACHY,MHPNEG

COMMON /SUGMG/ MSS(32),GSS(31) ,MGUTSS,GGUTSS,AGUTSS,FTGUT,
$FBGUT,FTAGUT ,FNGUT

REAL MSS,GSS,MGUTSS,GGUTSS, AGUTSS,FTGUT,FBGUT,FTAGUT, FNGUT

IsAasusy users are warned to check that no incompatibilities arise between the versions
actually used. Unfortunately there is no universal solution to this problem: the Fortran
standard does not allow you dynamically to vary the size of a (named) common block.
So if you use an earlier ISASUSY version, you have to shrink the size accordingly, and for
a later you may have to check that the above common blocks have not been expanded
further.

As a cross check, the option IMSS(1)=2 uses approximate analytical solutions of the
renormalization group equations [Dre95], which reproduce the output of ISASUSY within
~ 10% (based on comparisons of masses, decay widths, production cross sections, etc.).
This option is intended for debugging only, and does not represent the state—of-the—art.

In SUGRA and in other models with the SUSY breaking scale of order Mgyr, the spin—
3/2 superpartner of the graviton, the gravitino G (code 1000039), has a mass of order
My and interacts only gravitationally. In models of gauge-mediated SUSY breaking
[Din96], however, the gravitino can play a crucial role in the phenomenology, and can be
the lightest superpartner (LSP). Typically, sfermions decay to fermions and gravitinos,
and neutralinos, chargino, and gauginos decay to gauge or Higgs bosons and gravitinos.
Depending on the gravitino mass, the decay lengths can be substantial on the scale of
colliders. PYTHIA correctly handles finite decay lengths for all sparticles.

R-parity is a possible symmetry of the SUSY Lagrangian that prevents problems
of rapid proton decay and allows for a viable dark matter candidate. However, it is
also possible to allow a restricted amount of R—parity violation. At present, there is no
theoretical consensus that R—parity should be conserved, even in string models. In the
production of superpartners, PYTHIA assumes R—parity conservation (at least on the time
and distance scale of a typical collider experiment), and only lowest order, sparticle pair
production processes are included. Only those processes with eTe™, u™ ™, or quark and
gluon initial states are simulated. Tables 21, 22 and 23 list available SUSY processes. In
processes 210 and 213, £ refers to both € and fi. For ease of readability, we have removed
the subscript L on v. t;t7, 7;7; and 7,77 production correctly account for sfermion mixing.
Several processes are conspicuously absent from the table. For example, processes 255
and 257 would simulate the associated production of right handed squarks with charginos.
Since the right handed squark only couples to the higgsino component of the chargino, the
interaction strength is proportional to the quark mass, so these processes can be ignored.

By default, only R—parity conserving decays are allowed, so that one sparticle is stable,
either the lightest neutralino, the gravitino, or a sneutrino. SUSY decays of the top quark
are included, but all other SM particle decays are unaltered.

Generally, the decays of the superpartners are calculated using the formulae of
refs. [Gun88, Bar86a, Bar86b, Bar95]. All decays are spin averaged. Decays involving
b and t use the formulae of [Bar95], so they are valid for large values of tan 3. The one
loop decays x; — X;v and t — cx; are also included, but only with approximate formula.
Typically, these decays are only important when other decays are not allowed because of
mixing effects or phase space considerations.

One difference between the SUSY simulation and the other parts of the program is
that it is not beforehand known which sparticles may be stable. Normally this would
mean either the ¥ or the gravitino G, but in principle also other sparticles could be
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stable. The ones found to be stable have their MWID(KC) and MDCY(KC, 1) values set zero
at initialization. If several PYINIT calls are made in the same run, with different SUSY
parameters, the ones set zero above are not necessarily set back to nonzero values, since
most original values are not saved anywhere. As an exception to this rule, the PYMSIN
SUSY initialization routine, called by PYINIT, does save and restore the MWID(KC) and
MDCY (KC, 1) values of the lightest SUSY particle. It is therefore possible to combine
several PYINIT calls in a single run, provided that only the lightest SUSY particle is
stable. If this is not the case, MWID(KC) and MDCY(KC, 1) values may have to be reset by
hand, or else some particles that ought to decay will not do that.

8.7.6 SUSY examples

The SUSY routines and common block variables are described in section 9.5. To illustrate
the usage of the switches and parameters, we give five simple examples.

Example 1: Light Stop B

The first example is an MSSM model with a light neutralino y; and a light stop t;, so
that t — t1x1 can occur. The input parameters are
IMSS(1)=1, RMSS(1)=70., RMSS(2)=70., RMSS(3)=225., RMSS(4)=-40., RMSS(5)=1.5,
RMSS(6)=100., RMSS(7)=125., RMSS(8)=250., RMSS(9)=250., RMSS(10)=1500.,
RMSS(11)=1500., RMSS(12)=-128., RMSS(13)=100., RMSS(14)=125., RMSS(15)=800.,
RMSS(16)=800., RMSS(17)=0., and RMSS(19)=400.0.
The top mass is fixed at 175 GeV, PMAS(6,1)=175.0. The resulting model has M; = 55
GeV and My, = 38 GeV. IMSS(1)=1 turns on the MSSM simulation. By default, there
are no intrinsic relations between the gaugino masses, so M; = 70 GeV, My = 70 GeV,
and M3 = 225 GeV. The pole mass of the gluino is slightly higher than the parameter
Ms, and the decay g — tit + t;t occurs almost 100% of the time.

Example 2: SUSY Les Houches Accord spectrum
The second example shows how to input a spectrum file in the SUSY Les Houches Accord
format [Ska03] to PyTHIA. First, you should set IMSS(1)=11 and open the spectrum
file you want to use on some unused Logical Unit Number. Then, set IMSS(21) equal
to that number, to tell PYTHIA where to read the spectrum file from. This should be
done somewhere in your main program before calling PYINIT. During the call to PYINIT,
PyTHIA will read the spectrum file, perform a number of consistency checks and issue
warning messages if it finds something it does not understand or which seems inconsistent.
E.g. BLOCK GAUGE will normally be present in the spectrum file, but since PYTHIA cur-
rently cannot use the information in that block, it will issue a warning that the block will
be ignored. In case a decay table is also desired to be read in, the Logical Unit Number on
which the decay table is opened should be put in IMSS(22). To avoid inconsistencies, the
spectrum and the decay table should normally go together, so IMSS(22) should normally
be equal to IMSS(21).

Example 3: Calling I1SASUSY 7.67 at runtime
The third example shows how to use the built-in interface to ISASUSY. First, the PyTHIA
source code needs to be changed. Rename the function VISAJE to, for example, FDUMMY,
rename the subroutine SUGRA to e.g. SDUMMY, and recompile. In the calling program, set
IMSS(1)=12 and the RMSS input parameters exactly as in example 4, and compile the
executable while linked to both ISAJET and the modified PYTHIA. The resulting mass
and mixing spectrum is printed in the PYTHIA output.

Example 4: Approzimate SUGRA
This example shows you how to get a (very) approximate SUGRA model. Note that this
way of obtaining the SUSY spectrum should never be used for serious studies. The input
parameters are
IMSS(1)=2, RMSS(1)=200., RMSS(4)=1., RMSS(5)=10., RMSS(8)=800., and
RMSS(16)=0.0.
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The resulting model has Mz = 901 GeV, Mg, = 890 GeV, M; = 538 GeV, Mz, = 814
GeV, Mz = 560 GeV, My, = 80 GeV, M £ = 151 GeV, Mh =110 GeV, and MA = 883

GeV. It corresponds to the choice My= 800 GeV M, 5 =200 GeV, tan § = 10, Ay = 0, and
sign(p)> 0. The output is similar to an ISASUSY run, but there is not exact agreement.
Ezxample 5: ISASUSY 7.61 Model
The final example demonstrates how to convert the output of an ISASUSY run directly
into the PyTHIA format, i.e. if SUSY Les Houches Accord output is not available. This
assumes that you already made an ISASUSY run, e.g. with the equivalents of the input
parameters above. From the output of this run you can now extract those physical
parameters that need to be handed to PYTHIA, in the above example
IMSS(1)=1, IMSS(3)=1, IMSS(8)=0, IMSS(9)=1, RMSS(1)=79.61, RMSS(2)=155.51,
RMSS (3)=533.1, RMSS(4)=241.30, RMSS(5)=10., RMSS(6)=808.0, RMSS (7)=802.8,
RMSS(8)=878.4, RMSS(9)=877.1, RMSS(10)=743.81, RMSS(11)=871.26,
RMSS(12)=569.87, RMSS(13)=803.20, RMSS(14)=794.71, RMSS(15)=-554.96,
RMSS(16)=-383.23, RMSS(17)=-126.11, RMSS(19)=829.94 and RMSS(22)=878.5.

8.7.7 R-Parity Violation

R-parity, defined as R=(—1)2"38%L is a discrete multiplicative symmetry where S is the
particle spin, B is the baryon number, and L is the lepton number. All SM particles have
R=1, while all superpartners have R=—1, so a single SUSY particle cannot decay into
just SM particles if R—parity is conserved. In this case, the lightest superpartner (LSP)
is absolutely stable. Astrophysical considerations imply that a stable LSP should be elec-
trically neutral. Viable candidates are the lightest neutralino, the lightest sneutrino, or
alternatively the gravitino. Since the LSP can carry away energy without interacting
in a detector, the apparent violation of momentum conservation is an important part of
SUSY phenomenology. Also, when R—parity is conserved, superpartners must be pro-
duced in pairs from a SM initial state. The breaking of the R—parity symmetry would
result in lepton and/or baryon number violating processes. While there are strong exper-
imental constraints on some classes of R—parity violating interactions, others are hardly
constrained at all.

One simple extension of the MSSM is to break the multiplicative R—parity symmetry.
Presently, neither experiment nor any theoretical argument demand R-parity conserva-
tion, so it is natural to consider the most general case of R-parity breaking. It is con-
venient to introduce a function of superfields called the superpotential, from which the
Feynman rules for R-parity violating processes can be derived. The R-parity violating
(RPV) terms which can contribute to the superpotential are:

Wrpy = AijpL'L E¥ + X, L'Q D* + X\;,U' D’ D* + ¢;L; H, (154)

where 4, j, k are generation indices (1,2,3), L{ = v}, L} = {} and Q} = ui, b = dj are
lepton and quark components of SU(2)y, doublet superﬁelds and E' = e}y, D' = d', and
U’ = u', are lepton, down and up— quark SU(2)y, singlet superfields, respectlvely. The
unwritten SU(2)y, and SU(3)¢ indices imply that the first term is antisymmetric under
i < j, and the third term is antisymmetric under j <> k. Therefore, i # j in L'IJE* and
j #£ k in U'DIDF. The coefficients Aijks )\Z]k, )‘m w» and €; are Yukawa couplings, and there
is no a priori generic prediction for their values. In principle, Wgpy contains 48 extra
parameters over the R-parity—conserving MSSM case. In PYTHIA the effects of the last
term in eq. (154) are not included.

Expanding eq. (154) as a function of the superfield components, the interaction La-
grangian derived from the first term is

Lire = M {Pheleh + e vieh + (8h) viel + h.e.} (155)
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and from the second term,

i

Lrop = A {Didij’;% — éiuicﬂ% + JJLVZLJ% — ﬂieiLJ%Jr

(df) vid], — (dfy) epul, + h.e. (156)

ijk

Both of these sets of interactions violate lepton number. The U DD term, instead, violates
baryon number. In principle, all types of R—parity violating terms may co—exist, but this
can lead to a proton with a lifetime shorter than the present experimental limits. The
simplest way to avoid this is to allow only operators which conserve baryon—number but
violate lepton—number or vice versa.

There are several effects on the SUSY phenomenology due to these new couplings:
(1) lepton or baryon number violating processes are allowed, including the production of
single sparticles (instead of pair production), (2) the LSP is no longer stable, but can
decay to SM particles within a collider detector, and (3) because it is unstable, the LSP
need not be the neutralino or sneutrino, but can be charged and/or colored.

In the current version of PYTHIA, decays of supersymmetric particles to SM particles
via two different types of lepton number violating couplings and one type of baryon
number violating couplings can be invoked (Details about the L-violation implementation
and tests can be found in [Ska01]).

Complete matrix elements (including L — R mixing for all sfermion generations) for all
two-body sfermion and three-body neutralino, chargino, and gluino decays are included
(as given in [Dre00]). The final state fermions are treated as massive in the phase space
integrations and in the matrix elements for b, t, and 7.

The existence of R—odd couplings also allows for single sparticle production, i.e. there
is no requirement that SUSY particles should be produced in pairs. Single sparticle
production cross sections are not yet included in the program, and it may require some
rethinking of the parton shower to do so. For low-mass sparticles, the associated error
is estimated to be negligible, as long as the R-violating couplings are smaller than the
gauge couplings. For higher mass sparticles, the reduction of the phase space for pair
production becomes an important factor, and single sparticle production could dominate
even for very small values of the R-violating couplings. The total SUSY production cross
sections, as calculated by PYTHIA in its current form are thus underestimated, possibly
quite severely for heavy-mass sparticles.

Three possibilities exist for the initializations of the couplings, representing a fair
but not exhaustive range of models. The first, selected by setting IMSS(51)=1 for LLE,
IMSS(52)=1 for LQD, and/or IMSS(53)=1 for UDD type couplings, sets all the cou-
plings, independent of generation, to a common value of 10~™SS®GD 1(—RMSSE2) "5 /or
10~™83) " depending on which couplings are activated.

Taking now LLE couplings as an example, setting IMSS(51)=2 causes the LLE cou-
plings to be initialized (in PYINIT) to so-called ‘natural’ generation-hierarchical values, as
proposed in [Hin93|. These values, inspired by the structure of the Yukawa couplings in

the SM, are defined by:

iikl” = (RMSS(5 Me, M M m

|Aijr|? (RMSS (51) ) %1, 1ite, 11

7 7 J k

ikl e The; T X m

|Ngel? = (RMSS(52) )%, g, Mg, ;M= — = (157)
PR N v 126GeV

AGRl? = (RMSS(83) )21y, 11,110,

where my,, is the arithmetic mean of m,, and my,.

The third option available is to set IMSS(51)=3, IMSS(52)=3, and/or IMSS(53)=3,
in which case all the relevant couplings are zero by default (but the corresponding
lepton or baryon number violating processes are turned on) and the user is expected
to enter the non-zero coupling values by hand. (Where antisymmetry is required,
half of the entries are automatically derived from the other half, see IMSS(51)=3 and
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IMSS(563)=3.) RVLAM(i,j,k) contains the Az, RVLAMP(i,j,k) contains the )\;jk cou-

plings, and RVLAMB(i,j, k) contains the Aj; couplings.

8.8 Polarization

In most processes, incoming beams are assumed unpolarized. However, especially for ete™
linear collider studies, polarized beams would provide further important information on
many new physics phenomena, and at times help to suppress backgrounds. Therefore a few
process cross sections are now available also for polarized incoming beams. The average
polarization of the two beams is then set by PARJ(131) and PARJ(132), respectively. In
some cases, noted below, MSTP(50) need also be switched on to access the formulae for
polarized beams.

Process 25, WHW™ pair production, allows polarized incoming lepton beam particles.
The polarization effects are included both in the production matrix elements and in the
angular distribution of the final four fermions. Note that the matrix element used [Mah98]
is for on-shell W production, with a suppression factor added for finite width effects.
This polarized cross section expression, evaluated at vanishing polarization, disagrees
with the standard unpolarized one, which presumably is the more accurate of the two.
The difference can be quite significant below threshold and at very high energies. This
can be traced to the simplified description of off-shell W’s in the polarized formulae.
Good agreement is obtained either by switching off the W width with MSTP(42)=0 or by
restricting the W mass ranges (with CKIN(41) - CKIN(44)) to be close to on-shell. Tt is
therefore necessary to set MSTP(50)=1 to switch from the default standard unpolarized
formulae to the polarized ones.

Also many SUSY production processes now include the effects from polarization of the
incoming fermion beams. This applies for scalar pair production, with the exception of
sneutrino pair production and hA° and H°A® production, this omission being an oversight
at the time of this release, but easily remedied in the future.

The effect of polarized photons is included in the process vy — FFy, process 85. Here
the array values PARJ(131) and PARJ(132) are used to define the average longitudinal
polarization of the two photons.

8.9 Main Processes by Machine

In the previous section we have already commented on which processes have limited
validity, or have different meanings (according to conventional terminology) in different
contexts. Let us just repeat a few of the main points to be remembered for different
machines.

8.9.1 ete  collisions

The main annihilation process is number 1, efe™ — Z° where in fact the full v*/Z°
interference structure is included. This process can be used, with some confidence, for
c.m. energies from about 4 GeV upwards, i.e. at DORIS/CESR, PETRA /PEP, TRISTAN,
LEP, and any future linear colliders. (To get below 10 GeV, you have to change PARP(2),
however.) This is the default process obtained when MSEL=1, i.e. when you do not change
anything yourself.

Process 141 contains a Z", including full interference with the standard v*/Z°. With
the value MSTP(44)=4 in fact one is back at the standard v*/Z° structure, i.e. the Z"
piece has been switched off. Even so, this process may be useful, since it can simulate
e.g. efe” — hYA% Since the h® may in its turn decay to Z°Z°, a decay channel of
the ordinary Z° to h°A°, although physically correct, would be technically confusing. In
particular, it would be messy to set the original Z° to decay one way and the subsequent
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ones another. So, in this sense, the Z" could be used as a copy of the ordinary Z°, but
with a distinguishable label.

The process ete™ — T does not exist as a separate process in PYTHIA, but can be
simulated by using PYONIA, see section 6.2.

At LEP 2 and even higher energy machines, the simple s-channel process 1 loses out
to other processes, such as ete™ — Z°Z° and eTe™ — WHTW~, i.e. processes 22 and 25.
The former process in fact includes the structure ee™ — (v*/Z°%)(7*/Z°), which means
that the cross section is singular if either of the two v*/Z" masses is allowed to vanish. A
mass cut therefore needs to be introduced, and is actually also used in other processes,
such as efe™ — WHW—.

For practical applications, both with respect to cross sections and to event shapes,
it is imperative to include initial-state radiation effects. Therefore MSTP(11)=1 is the
default, wherein exponentiated electron-inside-electron distributions are used to give the
momentum of the actually interacting electron. By radiative corrections to process 1,
such processes as ete™ — vZ° are therefore automatically generated. If process 19 were
to be used at the same time, this would mean that radiation were to be double-counted.
In the alternative MSTP(11)=0, electrons are assumed to deposit their full energy in the
hard process, i.e. initial-state QED radiation is not included. This option is very useful,
since it often corresponds to the ‘ideal’ events that one wants to correct back to.

Resolved electrons also means that one may have interactions between photons. This
opens up the whole field of vy processes, which is described in section 8.3. In particular,
with ’gamma/e+’,’gamma/e-’ as beam and target particles in a PYINIT call, a flux of
photons of different virtualities is convoluted with a description of direct and resolved
photon interaction processes, including both low-p, and high-p, processes. This machin-
ery is directed to the description of the QCD processes, and does e.g. not address the
production of gauge bosons or other such particles by the interactions of resolved pho-
tons. For the latter kind of applications, a simpler description of partons inside photons
inside electrons may be obtained with the MSTP (12)=1 options and e* as beam and target
particles.

The thrust of the PYTHIA programs is towards processes that involve hadron pro-
duction, one way or another. Because of generalizations from other areas, also a
few completely non-hadronic processes are available. These include Bhabha scattering,
ete” — ete™ in process 10, and photon pair production, e"e™ — 7 in process 18. How-
ever, note that the precision that could be expected in a PYTHIA simulation of those
processes is certainly far less than that of dedicated programs. For one thing, electroweak
loop effects are not included. For another, nowhere is the electron mass taken into account,
which means that explicit cut-offs at some minimum p, are always necessary.

8.9.2 Lepton—hadron collisions

The main option for photoproduction and Deeply Inelastic Scattering (DIS) physics is
provided by the ’gamma/lepton’ option as beam or target in a PYINIT call, see section
8.3. The Q? range to be covered, and other kinematics constraints, can be set by CKIN
values. By default, when the whole Q? range is populated, obviously photoproduction
dominates.

The older DIS process 10, /q — ¢'¢, includes 7°/Z° /W= exchange, with full interfer-
ence, as described in section 8.3.2. The Z°/W= contributions are not implemented in the
>gamma/lepton’ machinery. Therefore process 10 is still the main option for physics at
very high Q?, but has been superseded for lower Q%. Radiation off the incoming lepton leg
is included by MSTP(11)=1 and off the outgoing one by MSTJ(41)=2 (both are default).
Note that both QED and QCD radiation (off the e and the q legs, respectively) are al-
lowed to modify the x and Q? values of the process, while the conventional approach in
the literature is to allow only the former. Therefore an option (on by default) has been

173



added to preserve these values by a post-facto rescaling, MSTP(23)=1. Further comments
on HERA applications are found in [Sj692b].

8.9.3 Hadron—hadron collisions

The default is to include QCD jet production by 2 — 2 processes, see section 8.2.1. Since
the differential cross section is divergent for p; — 0, a lower cut-off has to be introduced.
Normally that cut-off is given by the user-set pj i, value in CKIN(3). If CKIN(3) is
chosen smaller than a given value of the order of 2 GeV (see PARP(81) and PARP(82)),
then low-p, events are also switched on. The jet cross section is regularized at low p, , so
as to obtain a smooth joining between the high-p, and the low-p, descriptions, see further
section 11.2. As CKIN(3) is varied, the jump from one scenario to another is abrupt, in
terms of cross section: in a high-energy hadron collider, the cross section for jets down
to a pmin scale of a few GeV can well reach values much larger than the total inelastic,
non-diffractive cross section. Clearly this is nonsense; therefore either p i, should be
picked so large that the jet cross section be only a fraction of the total one, or else one
should select p|min = 0 and make use of the full description.

If one switches to MSEL=2, also elastic and diffractive processes are switched on, see
section 8.2.4. However, the simulation of these processes is fairly primitive, and should
not be used for dedicated studies, but only to estimate how much they may contaminate
the class of non-diffractive minimum bias events.

Most processes can be simulated in hadron colliders, since the bulk of PYTHIA pro-
cesses can be initiated by quarks or gluons. However, there are limits. Currently we in-
clude no photon or lepton parton distributions, which means that a process like vq — vq
is not accessible. Further, the possibility of having Z° and W interacting in processes
such as 71-77 has been hardwired process by process, and does not mean that there is a
generic treatment of Z° and W+ distributions.

The emphasis in the hadron—-hadron process description is on high energy hadron col-
liders. The program can be used also at fixed-target energies, but the multiple interaction
model for underlying events then breaks down and should not be used. The limit of ap-
plicability is somewhere at around 100 GeV. Only with the simpler model obtained for
MSTP(82)=1 can one go arbitrarily low.
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9 The Process Generation Program Elements

In the previous two sections, the physics processes and the event-generation schemes of
PyTHIA have been presented. Here, finally, the event-generation routines and the common
block variables are described. However, routines and variables related to initial- and final-
state showers, beam remnants and underlying events, and fragmentation and decay are
relegated to subsequent sections on these topics.

In the presentation in this section, information less important for an efficient use of
PYTHIA has been put closer to the end. We therefore begin with the main event generation
routines, and follow this by the main common block variables.

It is useful to distinguish three phases in a normal run with PYTHIA. In the first
phase, the initialization, the general character of the run is determined. At a minimum,
this requires the specification of the incoming hadrons and the energies involved. At
the discretion of the user, it is also possible to select specific final states, and to make
a number of decisions about details in the subsequent generation. This step is finished
by a PYINIT call, at which time several variables are initialized in accordance with the
values set. The second phase consists of the main loop over the number of events, with
each new event being generated by a PYEVNT call. This event may then be analysed,
using information stored in some common blocks, and the statistics accumulated. In the
final phase, results are presented. This may often be done without the invocation of any
PyYTHIA routines. From PYSTAT, however, it is possible to obtain a useful list of cross
sections for the different subprocesses.

9.1 The Main Subroutines

There are two routines that you must know: PYINIT for initialization and PYEVNT for the
subsequent generation of each new event. In addition, the cross section and other kinds of
information available with PYSTAT are frequently useful. The other two routines described
here, PYFRAM and PYKCUT, are of more specialized interest.

CALL PYINIT(FRAME,BEAM,TARGET,WIN)

Purpose: to initialize the generation procedure. Normally it is foreseen that this call
will be followed by many PYEVNT ones, to generate a sample of the event kind
specified by the PYINIT call. (For problems with cross section estimates in runs
of very few events per PYINIT call, see the description for PYSTAT (1) below in
this subsection.)

FRAME : a character variable used to specify the frame of the experiment. Upper-case
and lower-case letters may be freely mixed.

= ’CMS’ : colliding beam experiment in c.m. frame, with beam momentum in +z
direction and target momentum in —z direction.

= "FIXT’ : fixed-target experiment, with beam particle momentum pointing in +z
direction.

= "3MOM’ : full freedom to specify frame by giving beam momentum in P(1,1),
P(1,2) and P(1,3) and target momentum in P(2,1), P(2,2) and
P(2,3) in common block PYJETS. Particles are assumed on the mass
shell, and energies are calculated accordingly.

= 24MOM’ : as ’3MOM’, except also energies should be specified, in P(1,4) and
P(2,4), respectively. The particles need not be on the mass shell; effec-
tive masses are calculated from energy and momentum. (But note that
numerical precision may suffer; if you know the masses the option ’>5MOM’
below is preferable.)
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>6MOM°

’USER’

’NONE’

BEAM, TARGET :

: as *3MOM’, except also energies and masses should be specified, i.e the
full momentum information in P(1,1) - P(1,5) and P(2,1) - P(2,5)
should be given for beam and target, respectively. Particles need not be
on the mass shell. Space-like virtualities should be stored as —v/—m?2.
Especially useful for physics with virtual photons. (The virtuality could
be varied from one event to the next, but then it is convenient to initialize
for the lowest virtuality likely to be encountered.) Four-momentum and
mass information must match.
: a run primarily intended to involve external, user-defined processes,
see subsection 9.9. Information on incoming beam particles and energies
is read from the HEPRUP common block. In this option, the BEAM, TARGET
and WIN arguments are dummy.
: there will be no initialization of any processes, but only of resonance
widths and a few other process-independent variables. Subsequent to
such a call, PYEVNT cannot be used to generate events, so this option is
mainly intended for those who will want to construct their own events
afterwards, but still want to have access to some of the PYTHIA facilities.
In this option, the BEAM, TARGET and WIN arguments are dummy.
character variables to specify beam and target particles. Upper-case

and lower-case letters may be freely mixed. An antiparticle can be denoted by
‘bar’ at the end of the name (‘~’ is a valid alternative for reasons of backwards
compatibility). It is also possible to leave out the underscore (‘_") directly after
‘nu’ in neutrino names, and the charge for proton and neutron. The arguments
are dummy when the FRAME argument above is either ’USER’ or ’NONE’.

= e’ electron.

= e+’ positron.

= ’nu_e’ : V..

= ’nu_ebar’ : 7.

=’mu-’ : po.

= 'mu+’ @ opt.

= ’numu’ : v,

= ’numubar’ : 7,.

= ’tau-’ : 7.

= ’taut+’ : 7.

= ’nu_tau’ : v,.

= ’nu_taubar’ : 7,.

= ’gamma’ : photon (real, i.e. on the mass shell).

= ’gamma/e-’ : photon generated by the virtual-photon flux in an electron beam;
WIN below refers to electron, while photon energy and virtuality varies
between events according to what is allowed by CKIN(61) - CKIN(78).

= ’gamma/e+’ : as above for a positron beam.

= ’gamma/mu-’ : as above for a y~ beam.

= ’gamma/mu+’ : as above for a u beam.

= ’gamma/tau-’ : as above for a 77 beam.

= ’gamma/tau+’ : as above for a 71 beam.

= ’pi0’ : 7l

= ’pi+’ : 7t

=’pi-’ 7w

= ’n0’ neutron.

= ’nbar0’ : antineutron.

= ’p+’ proton.

= ’pbar-’ : antiproton.

= 7K+’ K™ meson; since parton distributions for strange hadrons are not avail-
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WIN :

able, very simple and untrustworthy recipes are used for this and subse-
quent hadrons, see subsection 7.1.

= ’K-’ : K~ meson.

= ’KS0’ : K2 meson.

= ’KLO’ : K} meson.

= ’Lambda0’ : A baryon.

= ’Sigma-’ : X~ baryon.

= ’Sigma0’ : X% baryon.

= ’Sigma+’ : 3T baryon.

= ’Xi-’ : =7 baryon.

= ’Xi0’ : ZY baryon.

= ’Omega-’ : ()~ baryon.

= ’pomeron’ : the pomeron IP; since pomeron parton distribution functions have
not been defined this option can not be used currently.

= ’reggeon’ : the reggeon IR, with comments as for the pomeron above.

related to energy of system, exact meaning depends on FRAME.

FRAME=’CMS’ : total energy of system (in GeV).

FRAME="FIXT’ : momentum of beam particle (in GeV/c).

FRAME=’3MOM’, ’4MOM’, ’5MOM’ : dummy (information is taken from the P vec-
tors, see above).

FRAME="USER’ : dummy (information is taken from the HEPRUP common block, see
above).

FRAME="NONE’ : dummy (no information required).

CALL PYEVNT

Purpose: to generate one event of the type specified by the PYINIT call. (This is the

main routine, which calls a number of other routines for specific tasks.)

CALL PYSTAT(MSTAT)

Purpose: to print out cross-sections statistics, decay widths, branching ratios, status

codes and parameter values. PYSTAT may be called at any time, after the
PYINIT call, e.g. at the end of the run, or not at all.

MSTAT : specification of desired information.

=1 : prints a table of how many events of the different kinds that have been
generated and the corresponding cross sections. All numbers already
include the effects of cuts required by you in PYKCUT.
At the bottom of the listing is also given the total number of warnings and
errors in the current run. (These numbers are reset at each PYINIT call.)
By default only the ten first warnings and errors are written explicitly;
here one may easily see whether many further occured but were not
written in the output. The final number is the fraction of events that
have failed the fragmentation cuts, i.e. where, for one reason or another,
the program has had problems fragmenting the system and has asked for
a new hard subprocess.
Note that no errors are given on the cross sections. In most cases a
cross section is obtained by Monte Carlo integration during the course
of the run. (Exceptions include e.g. total and elastic hadron-hadron
cross sections, which are parameterized and thus known from the very
onset.) A rule of thumb would then be that the statistical error of a
given subprocess scales like 0o /0 ~ 1/y/n, where n is the number of
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events generated of this kind. In principle, the numerator of this relation
could be decreased by making use of the full information accumulated
during the run, i.e. also on the cross section in those phase space points
that are eventually rejected. This is actually the way the cross section
itself is calculated. However, once you introduce further cuts so that
only some fraction of the generated events survive to the final analysis,
you would be back to the simple 1/y/n scaling rule for that number of
surviving events. Statistical errors are therefore usually better evaluated
within the context of a specific analysis. Furthermore, systematic errors
often dominate over the statistical ones.
Also note that runs with very few events, in addition to having large
errors, tend to have a bias towards overestimating the cross sections.
In a typical case, the average cross section obtained with many runs
of only one event each may be twice that of the correct answer of a
single run with many events. The reason is a ‘quit while you are ahead’
phenomenon, that an upwards fluctuation in the differential cross section
in an early try gives an acceptable event and thus terminates the run,
while a downwards one leads to rejection and a continuation of the run.
=2 prints a table of the resonances defined in the program, with their par-
ticle codes (KF), and all allowed decay channels. (If the number of gen-
erations in MSTP(1) is 3, however, channels involving fourth-generation
particles are not displayed.) For each decay channel is shown the se-
quential channel number (IDC) of the PYTHIA decay tables, the decay
products (usually two but sometimes three), the partial decay width,
branching ratio and effective branching ratio (in the event some channels
have been excluded by you).

=3 : prints a table with the allowed hard interaction flavours KFIN(I,J) for
beam and target particles.

=4 : prints a table of the kinematical cuts CKIN(I) set by you in the current
run.

=5 : prints a table with all the values of the status codes MSTP(I) and the

parameters PARP(I) used in the current run.

prints a table of all subprocesses implemented in the program.

=7 : prints two tables related to R-violating supersymmetry, where lepton
and /or baryon number is not conserved. The first is a collection of semi-
inclusive branching ratios where the entries have a form like “chi_10 -->
nu + q + q, where a sum has been performed over all lepton and quark
flavours. In the rightmost column of the table, the number of modes
that went into the sum is given. The purpose of this table is to give a
quick overview of the branching fractions, since there are currently more
than 1500 individual R-violating processes included in the generator.
Note that only the pure 1 — 3 parts of the 3-body modes are included
in this sum. If a process can also proceed via two successive 1 — 2
branchings (i.e. the intermediate resonance is on shell) the product of
these branchings should be added to the number given in this table.
A small list at the bottom of the table shows the total number of R—
violating processes in the generator, the number with non-zero branching
ratios in the current run, and the number with branching ratios larger
than 1073. The second table which is printed by this call merely lists the
R—violating A, X', and A" couplings.

Il
)

CALL PYFRAM(IFRAME)
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Purpose: to transform an event listing between different reference frames, if so desired.
The use of this routine assumes you do not do any boosts yourself.
IFRAME : specification of frame the event is to be boosted to.

=1: frame specified by you in the PYINIT call.
=2 : c.m. frame of incoming particles.
=3: hadronic c.m. frame of lepton-hadron interaction events. Mainly in-

tended for Deeply Inelastic Scattering, but can also be used in photo-
production. Is not guaranteed to work with the ’gamma/lepton’ options,
however, and so of limited use. Note that both the lepton and any pho-
tons radiated off the lepton remain in the event listing, and have to be
removed separately if you only want to study the hadronic subsystem.

CALL PYKCUT (MCUT)

Purpose: to enable you to reject a given set of kinematic variables at an early stage of the
generation procedure (before evaluation of cross sections), so as not to spend
unnecessary time on the generation of events that are not wanted. The routine
will not be called unless you require is by setting MSTP(141)=1, and never if
‘minimum-bias’-type events (including elastic and diffractive scattering) are to
be generated as well. Furthermore it is never called for user-defined external
processes. A dummy routine PYKCUT is included in the program file, so as to
avoid unresolved external references when the routine is not used.

MCUT : flag to signal effect of user-defined cuts.
=0 : event is to be retained and generated in full.
=1: event is to be rejected and a new one generated.

Remark : at the time of selection, several variables in the MINT and VINT arrays in
the PYINT1 common block contain information that can be used to make the
decision. The routine provided in the program file explicitly reads the variables
that have been defined at the time PYKCUT is called, and also calculates some
derived quantities. The information available includes subprocess type ISUB,
Eem, §,t, 10, 1, 1, T2, Tp, T, y, T, cos B, and a few more. Some of these may
not be relevant for the process under study, and are then set to zero.

9.2 Switches for Event Type and Kinematics Selection

By default, if PYTHIA is run for a hadron collider, only QCD 2 — 2 processes are gener-
ated, composed of hard interactions above p | i, =PARP(81), with low-p, processes added
on so as to give the full (parameterized) inelastic, non-diffractive cross section. In an ete”
collider, v*/Z° production is the default, and in an ep one it is Deeply Inelastic Scattering.
With the help of the common block PYSUBS, it is possible to select the generation of an-
other process, or combination of processes. It is also allowed to restrict the generation to
specific incoming partons/particles at the hard interaction. This often automatically also
restricts final-state flavours but, in processes such as resonance production or QCD/QED
production of new flavours, switches in the PYTHIA program may be used to this end; see
section 14.4.

The CKIN array may be used to impose specific kinematics cuts. You should here be
warned that, if kinematical variables are too strongly restricted, the generation time per
event may become very long. In extreme cases, where the cuts effectively close the full
phase space, the event generation may run into an infinite loop. The generation of 2 — 1
resonance production is performed in terms of the § and y variables, and so the ranges
CKIN(1) - CKIN(2) and CKIN(7) - CKIN(8) may be arbitrarily restricted without a

significant loss of speed. For 2 — 2 processes, cos 0 is added as a third generation variable,
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and so additionally the range CKIN(27) - CKIN(28) may be restricted without any loss
of efficiency..

Effects from initial- and final-state radiation are not included, since they are not known
at the time the kinematics at the hard interaction is selected. The sharp kinematical cut-
offs that can be imposed on the generation process are therefore smeared, both by QCD
radiation and by fragmentation. A few examples of such effects follow.

e Initial-state radiation implies that each of the two incoming partons has a non-
vanishing p, when they interact. The hard scattering subsystem thus receives a net
transverse boost, and is rotated with respect to the beam directions. In a 2 — 2
process, what typically happens is that one of the scattered partons receives an
increased p, , while the p, of the other parton is reduced.

e Since the initial-state radiation machinery assigns space-like virtualities to the in-
coming partons, the definitions of z in terms of energy fractions and in terms of
momentum fractions no longer coincide, and so the interacting subsystem may re-
ceive a net longitudinal boost compared with naive expectations, as part of the
parton-shower machinery.

e Initial-state radiation gives rise to additional jets, which in extreme cases may be
mistaken for either of the jets of the hard interaction.

e Final-state radiation gives rise to additional jets, which smears the meaning of the
basic 2 — 2 scattering. The assignment of soft jets is not unique. The energy of a
jet becomes dependent on the way it is identified, e.g. what jet cone size is used.

e The beam remnant description assigns primordial k£, values, which also gives a
net p, shift of the hard-interaction subsystem; except at low energies this effect
is overshadowed by initial-state radiation, however. Beam remnants may also add
further activity under the ‘perturbative’ event.

e Fragmentation will further broaden jet profiles, and make jet assignments and energy
determinations even more uncertain.

In a study of events within a given window of experimentally defined variables, it is up
to you to leave such liberal margins that no events are missed. In other words, cuts have
to be chosen such that a negligible fraction of events migrate from outside the simulated
region to inside the interesting region. Often this may lead to low efficiency in terms of
what fraction of the generated events are actually of interest to you. See also section 3.6.

In addition to the variables found in PYSUBS, also those in the PYPARS common block
may be used to select exactly what one wants to have simulated. These possibilities will
be described in the following section.

The notation used above and in the following is that ‘> denotes internal variables in
the hard scattering subsystem, while “*’ is for variables in the c.m. frame of the event as
a whole.

COMMON/PYSUBS/MSEL ,MSELPD,MSUB(500) ,KFIN(2,-40:40) ,CKIN(200)

Purpose: to allow you to run the program with any desired subset of processes, or restrict
flavours or kinematics. If the default values, denoted below by (D=...), are
not satisfactory, they must be changed before the PYINIT call.

MSEL : (D=1) a switch to select between full user control and some preprogrammed
alternatives.
=0 : desired subprocesses have to be switched on in MSUB, i.e. full user control.
=1 : depending on incoming particles, different alternatives are used.

Lepton—lepton: Z or W production (ISUB = 1 or 2).
Lepton—hadron: Deeply Inelastic Scattering (ISUB = 10; this option is
now out of date for most applications, superseded by the ’gamma/lepton’
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= 10 :
11
12
13
14 .
= 15 :

16 :
17
= 18 :

19

= 21 :
22
23
24 .
25
35 :
36 :
= 37 :

machinery).

Hadron-hadron: QCD high-p, processes (ISUB = 11, 12, 13, 28, 53,
68); additionally low-p, production if CKIN(3) <PARP(81) or PARP(82),
depending on MSTP(82) (ISUB = 95). If low-p, is switched on, the other
CKIN cuts are not used.

A resolved photon counts as hadron. When the photon is not resolved,
the following cases are possible.

Photon-lepton: Compton scattering (ISUB = 34).

Photon-hadron: photon-parton scattering (ISUB = 33, 34, 54).
Photon—photon: fermion pair production (ISUB = 58).

When photons are given by the ’gamma/lepton’ argument in the PYINIT
call, the outcome depends on the MSTP(14) value. Default is a mixture
of many kinds of processes, as described in section 8.3.

as MSEL = 1 for lepton—lepton, lepton—hadron and unresolved photons.
For hadron—hadron (including resolved photons) all QCD processes, in-
cluding low-p |, single and double diffractive and elastic scattering, are
included (ISUB = 11, 12, 13, 28, 53, 68, 91, 92, 93, 94, 95). The CKIN
cuts are here not used.

For photons given with the ’gamma/lepton’ argument in the PYINIT call,
the above processes are replaced by other ones that also include the pho-
ton virtuality in the cross sections. The principle remains to include both
high- and low-p, processes, however.

charm (c€) production with massive matrix elements (ISUB = 81, 82, 84,
85).

bottom (bb) production with massive matrix elements (ISUB = 81, 82,
84, 85).

top (tt) production with massive matrix elements (ISUB = 81, 82, 84,
85).

fourth generation b’ (b'b’) production with massive matrix elements
(ISUB = 81, 82, 84, 85).

fourth generation t’ (t't') production with massive matrix elements (ISUB
= 81, 82, 84, 85).

prompt photons (ISUB = 14, 18, 29).

Z° production (ISUB = 1).

W= production (ISUB = 2).

Z° + jet production (ISUB = 15, 30).

W= + jet production (ISUB = 16, 31).

pair production of different combinations of v, Z° and W (except v7;
see MSEL = 10) (ISUB = 19, 20, 22, 23, 25).

hY production (ISUB = 3, 102, 103, 123, 124).

hoZ% or h®W= (ISUB = 24, 26).

h® production, combination relevant for ete™ annihilation (ISUB = 24,
103, 123, 124).

h° HY and A° production, excepting pair production (ISUB = 24, 103,
123, 124, 153, 158, 171, 173, 174, 176, 178, 179).

Z"° production (ISUB = 141).

W% production (ISUB = 142).

H* production (ISUB = 143).

R? production (ISUB = 144).

Lq (leptoquark) production (ISUB = 145, 162, 163, 164).

single bottom production by W exchange (ISUB = 83).

single top production by W exchange (ISUB = 83).

single b’ production by W exchange (ISUB = 83).
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= 39 :
= 40 :
=41 .
=42 .
= 43 :
= 44 .
= 45
= 50 :

= 51 :

MSUB :

MSUB (ISUB)
MSUB (ISUB)

single t’ production by W exchange (ISUB = 83).

all MSSM processes except Higgs production.

squark and gluino production (ISUB = 243, 244, 258, 259, 271-280).
stop pair production (ISUB = 261-265).

slepton pair production (ISUB = 201-214).

squark or gluino with chargino or neutralino, (ISUB = 237242, 246-256).
chargino—neutralino pair production (ISUB = 216-236).

sbottom production (ISUB = 281-296).

pair production of technipions and gauge bosons by wo™ Jwl. exchange
(ISUB = 361-377).

standard QCD 2 — 2 processes 381-386, with possibility to introduce
compositeness/technicolor modifications, see ITCM(5).

(D=500*0) array to be set when MSEL=0 (for MSEL> 1 relevant entries are set in
PYINIT) to choose which subset of subprocesses to include in the generation.
The ordering follows the ISUB code given in section 8.1 (with comments as
given there).

0 : the subprocess is excluded.

1 : the subprocess is included.

Note: when MSEL=0, the MSUB values set by you are never changed by PYTHIA.

KFIN(I,J)

I :
J .

If you want to combine several different ‘subruns’, each with its own
PYINIT call, into one single run, it is up to you to remember not only
to switch on the new processes before each new PYINIT call, but also to
switch off the old ones that are no longer desired.

: provides an option to selectively switch on and off contributions to the cross
sections from the different incoming partons/particles at the hard interaction.
In combination with the PYTHIA resonance decay switches, this also allows
you to set restrictions on flavours appearing in the final state.

is 1 for beam side of event and 2 for target side.
enumerates flavours according to the KF code; see section 5.1.

KFIN(I,J) = O : the parton/particle is forbidden.
KFIN(I,J) = 1 : the parton/particle is allowed.
Note: By default, the following are switched on: d, u, s, ¢, b, e™, ve, u=, v,

CKIN :

CKIN(1),

CKIN(3),

T, Vs, g, 7, Z°, WT and their antiparticles. In particular, top is off, and
has to be switched on explicitly if needed.

kinematics cuts that can be set by you before the PYINIT call, and that affect
the region of phase space within which events are generated. Some cuts are
‘hardwired’ while most are ‘softwired’. The hardwired ones are directly related
to the kinematical variables used in the event selection procedure, and there-
fore have negligible effects on program efficiency. The most important of these
are CKIN(1) - CKIN(8), CKIN(27) - CKIN(28), and CKIN(31) - CKIN(32).
The softwired ones are most of the remaining ones, that cannot be fully taken
into account in the kinematical variable selection, so that generation in con-
strained regions of phase space may be slow. In extreme cases the phase space
may be so small that the maximization procedure fails to find any allowed
points at all (although some small region might still exist somewhere), and
therefore switches off some subprocesses, or aborts altogether.

CKIN(2) : (D=2.-1. GeV) range of allowed 71 = v/3 values. If CKIN(2)< 0.,
the upper limit is inactive.

CKIN(4) : (D=0.-1. GeV) range of allowed p, values for hard 2 — 2 pro-
cesses, with transverse momentum p, defined in the rest frame of the hard
interaction. If CKIN(4)< 0., the upper limit is inactive. For processes that are
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singular in the limit p; — 0 (see CKIN(6)), CKIN(5) provides an additional
constraint. The CKIN(3) and CKIN(4) limits can also be used in 2 — 1 — 2
processes. Here, however, the product masses are not known and hence are as-
sumed to be vanishing in the event selection. The actual p, range for massive
products is thus shifted downwards with respect to the nominal one.

Note 1: For processes that are singular in the limit p;, — 0, a careful choice

of CKIN(3) value is not only a matter of technical convenience, but a
requirement for obtaining sensible results. One example is the hadropro-
duction of a W* or Z° gauge boson together with a jet, discussed in
subsection 8.4.2. Here the point is that this is a first-order process (in
i), correcting the zeroth-order process of a W+ or Z° without any jet. A
full first-order description would also have to include virtual corrections
in the low-p, region.

Generalizing also to other processes, the simple-minded higher-order de-
scription breaks down when CKIN(3) is selected so small that the higher-
order process cross section corresponds to a non-negligible fraction of the
lower-order one. This number will vary depending on the process con-
sidered and the c.m. energy used, but could easily be tens of GeV rather
than the default 1 GeV provided as technical cut-off in CKIN(5). Pro-
cesses singular in p; — 0 should therefore only be used to describe the
high-p, behaviour, while the lowest-order process complemented with
parton showers should give the inclusive distribution and in particular
the one at small p, values.

Technically the case of QCD production of two jets is slightly more com-
plicated, and involves eikonalization to multiple parton—parton scatter-
ing, subsection 11.2, but again the conclusion is that the processes have
to be handled with care at small p, values.

Note 2: There are a few situations in which CKIN(3) may be overwritten; espe-

CKIN(5)

CKIN(6)

CKIN(7),

CKIN(9),

cially when different subprocess classes are mixed in yp or v collisions,
see subsection 8.3.

: (D=1. GeV) lower cut-off on p, values, in addition to the CKIN(3) cut above,

for processes that are singular in the limit p; — 0 (see CKIN(6)).

: (D=1. GeV) hard 2 — 2 processes, which do not proceed only via an inter-

mediate resonance (i.e. are 2 — 1 — 2 processes), are classified as singular in
the limit p; — 0 if either or both of the two final-state products has a mass
m <CKIN(6).

CKIN(8) : (D=-10.,10.) range of allowed scattering subsystem rapidities y =
y* in the c.m. frame of the event, where y = (1/2)In(x;/x2). (Following the
notation of this section, the variable should be given as y*, but because of its
frequent use, it was called y in section 7.2.)

CKIN(10) : (D=-40.,40.) range of allowed (true) rapidities for the product
with largest rapidity in a 2 — 2 or a 2 — 1 — 2 process, defined in the c.m.
frame of the event, i.e. max(y3, y;). Note that rapidities are counted with sign,
i.e. if y5 = 1 and y; = —2 then max(y3,y;) = 1.

CKIN(11), CKIN(12) : (D=-40.,40.) range of allowed (true) rapidities for the prod-

uct with smallest rapidity in a 2 — 2 or a 2 — 1 — 2 process, defined
in the c.m. frame of the event, i.e. min(y3,y;). Consistency thus requires
CKIN(11)<CKIN(9) and CKIN(12)<CKIN(10).

CKIN(13), CKIN(14) : (D=-40.,40.) range of allowed pseudorapidities for the product

with largest pseudorapidity in a 2 — 2 or a 2 — 1 — 2 process, defined in
the c.m. frame of the event, i.e. max(n;,n;). Note that pseudorapidities are
counted with sign, i.e. if n§ = 1 and n} = —2 then max(ni,n;) = 1.

CKIN(15), CKIN(16) : (D=-40.,40.) range of allowed pseudorapidities for the product
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CKIN(17),

CKIN(19),

CKIN(21),
CKIN(23),
CKIN(25),

CKIN(27),

CKIN(31),

CKIN(35),

CKIN(37),

CKIN(39),

with smallest pseudorapidity in a 2 — 2 or a 2 — 1 — 2 process, defined
in the c.m. frame of the event, i.e. min(n},n;). Consistency thus requires
CKIN(15)<CKIN(13) and CKIN(16)<CKIN(14).

CKIN(18) : (D=-1.,1.) range of allowed cosf* values for the product with
largest cos0* value in a 2 — 2 or a 2 — 1 — 2 process, defined in the c.m.
frame of the event, i.e. max(cos 3, cos6}).

CKIN(20) : (D=-1.,1.) range of allowed cos@* values for the product with
smallest cos@* value in a 2 — 2 or a 2 — 1 — 2 process, defined in the
cam. frame of the event, i.e. min(cos#j,cosf}). Consistency thus requires
CKIN(19) <CKIN(17) and CKIN(20)<CKIN(18).

CKIN(22) : (D=0.,1.) range of allowed z; values for the parton on side 1
that enters the hard interaction.

CKIN(24) : (D=0.,1.) range of allowed x5 values for the parton on side 2
that enters the hard interaction.

CKIN(26) : (D=-1.,1.) range of allowed Feynman-x values, where xp = 1 —
Zo.

CKIN(28) : (D=-1.,1.) range of allowed cos 0 values in a hard 2 — 2 scatter-
ing, where 6 is the scattering angle in the rest frame of the hard interaction.

CKIN(32) : (D=2.-1. GeV) range of allowed 1/ = v/3' values, where 1/ is
the mass of the complete three- or four-body final state in 2 — 3 or 2 — 4
processes (while 7, constrained in CKIN(1) and CKIN(2), here corresponds
to the one- or two-body central system). If CKIN(32)< 0., the upper limit is
inactive.

CKIN(36) : (D=0.-1. GeV?) range of allowed |{| = —¢ values in 2 — 2
processes. Note that for Deeply Inelastic Scattering this is nothing but the
Q? scale, in the limit that initial- and final-state radiation is neglected. If
CKIN(36) < 0., the upper limit is inactive.

CKIN(38) : (D=0.-1. GeV?) range of allowed || = —a values in 2 — 2
processes. If CKIN(38) < 0., the upper limit is inactive.

CKIN(40) : (D=4., -1. GeV?) the W? range allowed in DIS processes, i.e.
subprocess number 10. If CKIN(40) < 0., the upper limit is inactive. Here W?2
is defined in terms of W2 = Q*(1 — z)/x. This formula is not quite correct, in
that (i) it neglects the target mass (for a proton), and (i) it neglects initial-
state photon radiation off the incoming electron. It should be good enough for
loose cuts, however. These cuts are not checked if process 10 is called for two
lepton beams.

CKIN(41) - CKIN(44) : (D=12.,-1.,12.,-1. GeV) range of allowed mass values of the

two (or one) resonances produced in a ‘true’ 2 — 2 process, i.e. one not (only)
proceeding through a single s-channel resonance (2 — 1 — 2). (These are the
ones listed as 2 — 2 in the tables in section 8.1.) Only particles with a width
above PARP (41) are considered as bona fide resonances and tested against the
CKIN limits; particles with a smaller width are put on the mass shell without
applying any cuts. The exact interpretation of the CKIN variables depends on
the flavours of the two produced resonances. ~

For two resonances like Z°W™ (produced from f;f; — Z°W™), which are not
identical and which are not each other’s antiparticles, one has

CKIN(41)< my <CKIN(42), and

CKIN(43) < my <CKIN(44),

where m; and msy are the actually generated masses of the two resonances,
and 1 and 2 are defined by the order in which they are given in the production
process specification.

For two resonances like Z°Z°, which are identical, or WHW~, which are each
other’s antiparticles, one instead has

184



CKIN(41) < min(my, me) <CKIN(42), and

CKIN(43) < max(mj, my) <CKIN(44).

In addition, whatever limits are set on CKIN(1) and, in particular, on CKIN(2)
obviously affect the masses actually selected.

Note 1: If MSTP(42)=0, so that no mass smearing is allowed, the CKIN values have

no effect (the same as for particles with too narrow a width).

Note 2: If CKIN(42)<CKIN(41) it means that the CKIN(42) limit is inactive;

correspondingly, if CKIN(44) <CKIN(43) then CKIN(44) is inactive.

Note 3: If limits are active and the resonances are identical, it is up to you to

ensure that CKIN(41) <CKIN(43) and CKIN(42)<CKIN(44).

Note 4: For identical resonances, it is not possible to preselect which of the res-

onances is the lighter one; if, for instance, one Z° is to decay to leptons
and the other to quarks, there is no mechanism to guarantee that the
lepton pair has a mass smaller than the quark one.

Note 5: The CKIN values are applied to all relevant 2 — 2 processes equally, which

may not be what one desires if several processes are generated simulta-
neously. Some caution is therefore urged in the use of the CKIN(41) -
CKIN(44) values. Also in other respects, you are recommended to take
proper care: if a Z° is only allowed to decay into bb, for example, setting
its mass range to be 2-8 GeV is obviously not a good idea.

CKIN(45) - CKIN(48) : (D=12.,-1.,12.,-1. GeV) range of allowed mass values of the two

(or one) secondary resonances produced in a 2 — 1 — 2 process (like gg —
h" — Z°Z%) or even a 2 — 2 — 4 (or 3) process (like qq — Z°h® — ZOWTW™).
Note that these CKIN values only affect the secondary resonances; the primary
ones are constrained by CKIN(1), CKIN(2) and CKIN(41) - CKIN(44) (indi-
rectly, of course, the choice of primary resonance masses affects the allowed
mass range for the secondary ones). What is considered to be a resonance is
defined by PARP(41); particles with a width smaller than this are automat-
ically put on the mass shell. The description closely parallels the one given
for CKIN(41) - CKIN(44). Thus, for two resonances that are not identical or
each other’s antiparticles, one has

CKIN(45) < m; <CKIN(46), and

CKIN(47) < my <CKIN(48),

where m and ms are the actually generated masses of the two resonances, and
1 and 2 are defined by the order in which they are given in the decay channel
specification in the program (see e.g. output from PYSTAT(2) or PYLIST(12)).
For two resonances that are identical or each other’s antiparticles, one instead
has

CKIN(45) < min(my, my) <CKIN(46), and

CKIN(47) < max(my, ms) <CKIN(48).

Notes 1 - 5: as for CKIN(41) - CKIN(44), with trivial modifications.
Note 6: Setting limits on secondary resonance masses is possible in any of the

channels of the allowed types (see above). However, so far only h® — Z°7°
and h® — W*W~ have been fully implemented, such that an arbitrary
mass range below the naive mass threshold may be picked. For other
possible resonances, any restrictions made on the allowed mass range are
not reflected in the cross section; and further it is not recommendable to
pick mass windows that make a decay on the mass shell impossible.

CKIN(49) - CKIN(50) : allow minimum mass limits to be passed from PYRESD to

PYOFSH. They are used for tertiary and higher resonances, i.e. those not con-
trolled by CKIN(41)-CKIN(48). They should not be touched by the user.

CKIN(51) - CKIN(56) : (D=0.,-1.,0.,-1.,0.,-1. GeV) range of allowed transverse mo-

menta in a true 2 — 3 process. This means subprocesses such as 121-124 for
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CKIN(61)

CKIN(61)

CKIN(65)

CKIN(69)

CKIN(73)

CKIN(77),

h® production, and their H°, A® and H** equivalents. CKIN(51) - CKIN(54)
corresponds to p; ranges for scattered partons, in order of appearance, i.e.
CKIN(51) - CKIN(52) for the parton scattered off the beam and CKIN(53) -
CKIN(54) for the one scattered off the target. CKIN(55) and CKIN(56) here
sets p, limits for the third product, the h® i.e. the CKIN(3) and CKIN(4)
values have no effect for this process. Since the p; of the Higgs is not one of
the primary variables selected, any constraints here may mean reduced Monte
Carlo efficiency, while for these processes CKIN(51) - CKIN(54) are ‘hard-
wired’ and therefore do not cost anything. As usual, a negative value implies
that the upper limit is inactive.
- CKIN(78) : allows to restrict the range of kinematics for the photons gen-
erated off the lepton beams with the ’gamma/lepton’ option of PYINIT. In
each quartet of numbers, the first two corresponds to the range allowed on
incoming side 1 (beam) and the last two to side 2 (target). The cuts are only
applicable for a lepton beam. Note that the x and Q? (P?) variables are the
basis for the generation, and so can be restricted with no loss of efficiency. For
leptoproduction (i.e. lepton on hadron) the W is uniquely given by the one x
value of the problem, so here also W cuts are fully efficient. The other cuts
may imply a slowdown of the program, but not as much as if equivalent cuts
only are introduced after events are fully generated. See [Fri00] for details.
- CKIN(64) : (D=0.0001,0.99,0.0001,0.99) allowed range for the energy frac-
tions x that the photon take of the respective incoming lepton energy. These
fractions are defined in the c.m. frame of the collision, and differ from energy
fractions as defined in another frame. (Watch out at HERA!) In order to avoid
some technical problems, absolute lower and upper limits are set internally at
0.0001 and 0.9999.
- CKIN(68) : (D=0.,-1.,0.,-1. GeV?) allowed range for the spacelike virtuality
of the photon, conventionally called either Q? or P2, depending on process. A
negative number means that the upper limit is inactive, i.e. purely given by
kinematics. A nonzero lower limit is implicitly given by kinematics constraints.
- CKIN(72) : (D=0.,-1.,0.,-1.) allowed range of the scattering angle 6 of the
lepton, defined in the c.m. frame of the event. (Watch out at HERA!) A
negative number means that the upper limit is inactive, i.e. equal to 7.
- CKIN(76) : (D=0.0001,0.99,0.0001,0.99) allowed range for the light-cone
fraction y that the photon take of the respective incoming lepton energy. The
light-cone is defined by the four-momentum of the lepton or hadron on the
other side of the event (and thus deviates from true light-cone fraction by
mass effects that normally are negligible). The y value is related to the = and
Q? (P?) values by y = x + Q*/s if mass terms are neglected.

CKIN(78) : (D=2.-1. GeV) allowed range for W, i.e. either the photon—
hadron or photon—photon invariant mass. A negative number means that the
upper limit is inactive.

9.3 The General Switches and Parameters

The PYPARS common block contains the status code and parameters that regulate the
performance of the program. All of them are provided with sensible default values, so that
a novice user can neglect them, and only gradually explore the full range of possibilities.
Some of the switches and parameters in PYPARS will be described later, in the shower and
beam remnants sections.

COMMON/PYPARS/MSTP (200) ,PARP (200) ,MSTI (200) ,PARI(200)
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Purpose:

MSTP (1)
MSTP (2)

[

=2 :

MSTP(3)

MSTP (4)

MSTP(7)

to give access to status code and parameters that regulate the performance of
the program. If the default values, denoted below by (D=...), are not satis-
factory, they must in general be changed before the PYINIT call. Exceptions,
i.e. variables that can be changed for each new event, are denoted by (C).

: (D=3) maximum number of generations. Automatically set < 4.
: (D=1) calculation of as at hard interaction, in the routine PYALPS.
=0 :

« is fixed at value PARU(111).
first-order running o.
second-order running a.

: (D=2) selection of A value in ay for MSTP(2) > 1.
=1:

A is given by PARP(1) for hard interactions, by PARP(61) for space-like
showers, by PARP(72) for time-like showers not from a resonance decay,
and by PARJ(81) for time-like ones from a resonance decay (including e.g.
v/Z° — qq decays, i.e. conventional eTe~ physics). This A is assumed
to be valid for 5 flavours; for the hard interaction the number of flavours
assumed can be changed by MSTU(112).

A value is chosen according to the parton-distribution-function para-
meterizations. The choice is always based on the proton parton-
distribution set selected, i.e. is unaffected by pion and photon parton-
distribution selection. All the A values are assumed to refer to 4 flavours,
and MSTU(112) is set accordingly. This A value is used both for the hard
scattering and the initial- and final-state radiation. The ambiguity in the
choice of the Q? argument still remains (see MSTP(32), MSTP(64) and
MSTJ(44)). This A value is used also for MSTP(57)=0, but the sensible
choice here would be to use MSTP(2)=0 and have no initial- or final-state
radiation. This option does not change the PARJ(81) value of timelike
parton showers in resonance decays, so that LEP experience on this spe-
cific parameter is not overwritten unwittingly. Therefore PARJ(81) can
be updated completely independently.

as =2, except that here also PARJ(81) is overwritten in accordance with
the A value of the proton parton-distribution-function set.

: (D=0) treatment of the Higgs sector, predominantly the neutral one.

the h® is given the Standard Model Higgs couplings, while H” and A° cou-
plings should be set by you in PARU(171) - PARU(175) and PARU(181)
- PARU(185), respectively.

you should set couplings for all three Higgs bosons, for the h® in
PARU(161) - PARU(165), and for the H? and A as above.

the mass of h” in PMAS(25,1) and the tan 3 value in PARU(141) are used
to derive H, A and H* masses, and h®, H°, A° and H* couplings, using
the relations of the Minimal Supersymmetric extension of the Standard
Model at Born level [Gun90]. Existing masses and couplings are overwrit-
ten by the derived values. See section 8.5.3 for discussion on parameter
constraints.

as =2, but using relations at the one-loop level. This option is not yet
implemented as such. However, if you initialize the SUSY machinery
with IMSS(1)=1, then the SUSY parameters will be used to calculate
also Higgs masses and couplings. These are stored in the appropriate
slots, and the value of MSTP(4) is overwritten to 1.

: (D=0) choice of heavy flavour in subprocesses 81-85. Does not apply for

MSEL=4-8, where the MSEL value always takes precedence.
for processes 81-84 (85) the ‘heaviest’ flavour allowed for gluon (photon)
splitting into a quark—antiquark (fermion—antifermion) pair, as set in the
MDME array. Note that ‘heavy’ is defined as the one with largest KF code,
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1 -8

so that leptons take precedence if they are allowed.
pick this particular quark flavour; e.g., MSTP(7)=6 means that top will
be produced.

11 - 18 : pick this particular lepton flavour. Note that neutrinos are not possi-

ble, i.e. only 11, 13, 15 and 17 are meaningful alternatives. Lepton pair
production can only occur in process 85, so if any of the other processes
have been switched on they are generated with the same flavour as would
be obtained in the option MSTP(7)=0.

MSTP(8) : (D=0) choice of electroweak parameters to use in the decay widths of reso-

nanc
=0 :

=1

Note:

es (W, Z, h,...) and cross sections (production of W’s, Z’s, h’s, ...).
everything is expressed in terms of a running v, (Q?) and a fixed sin6yy,
i.e. G is nowhere used.

a replacement is made according to cem(Q?) — V2GEm; sin®fy, /7 in
all widths and cross sections. If Gg and my are considered as given, this
means that sin®fy, and my are the only free electroweak parameter.

a replacement is made as for =1, but additionally sin®fy, is constrained
by the relation sin®fy, = 1 — m%;/m2. This means that my remains as
a free parameter, but that the sin®fy, value in PARU(102) is never used,
except in the vector couplings in the combination v = a —4 sin®@yye. This
latter degree of freedom enters e.g. for forward-backward asymmetries in
Z° decays.

This option does not affect the emission of real photons in the initial and
final state, where a.p, is always used. However, it does affect also purely
electromagnetic hard processes, such as qq — 77.

MSTP(9) : (D=0) inclusion of top (and fourth generation) as allowed remnant flavour ¢

in pr

and

that
=0 :
=1

MSTP(11) : (D
=0 :
=1

MSTP(12) : (D

ocesses that involve q — ¢+ W branchings as part of the overall process,
where the matrix elements have been calculated under the assumption
q’ is massless.

no.

yes, but it is possible, as before, to switch off individual channels by the
setting of MDME switches. Mass effects are taken into account, in a crude
fashion, by rejecting events where kinematics becomes inconsistent when
the ¢’ mass is included.

=1) use of electron parton distribution in e*e™ and ep interactions.

no, i.e. electron carries the whole beam energy.

yes, i.e. electron carries only a fraction of beam energy in agreement with
next-to-leading electron parton-distribution function, thereby including
the effects of initial-state bremsstrahlung.

=0) use of e~ (‘sea’; i.e. from e — v — €), e, quark and gluon distribution

functions inside an electron.

=0 :
=1

Note:

MSTP(13) : (D

off.

on, provided that MSTP(11)> 1. Quark and gluon distributions are ob-
tained by numerical convolution of the photon content inside an electron
(as given by the bremsstrahlung spectrum of MSTP(11)=1) with the quark
and gluon content inside a photon. The required numerical precision is
set by PARP(14). Since the need for numerical integration makes this op-
tion somewhat more time-consuming than ordinary parton-distribution
evaluation, one should only use it when studying processes where it is
needed.

for all traditional photoproduction/DIS physics this option is superseded
by the ’gamma/lepton’ option for PYINIT calls, but can still be of use for
some less standard processes.

=1) choice of Q? range over which electrons are assumed to radiate pho-
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Note:

MSTP(14)

tons; affects normalization of e~ (sea), e™, 7, quark and gluon distributions
1n51de an electron for MSTP (12)=1.

range set by Q? argument of parton-distribution-function call, i.e. by Q?
scale of the hard interaction. Therefore parton distributions are propor-
tional to In(Q?/m?).

range set by the user-determined Q2 , given in PARP(13). Parton distri-
butions are assumed to be proportional to In((Q2 .. /m?)(1—z)/z?*). This
is normally most appropriate for photoproduction, where the electron is
supposed to go undetected, i.e. scatter less than Q2 ..

the choice of effective range is especially touchy for the quark and gluon
distributions. An (almost) on-the-mass-shell photon has a VMD piece
that dies away for a virtual photon. A simple convolution of distribu-
tion functions does not take this into account properly. Therefore the
contribution from () values above the p mass should be suppressed. A
choice of Qumax & 1 GeV is then appropriate for a photoproduction limit
description of physics. See also note for MSTP(12).

: (D=30) structure of incoming photon beam or target. Historically, numbers
up to 10 were set up for real photons, and subsequent ones have been added
also to allow for virtual photon beams. The reason is that the existing options
specify e.g. directx VMD, summing over the possibilities of which photon is
direct and which VMD. This is allowed when the situation is symmetric, i.e.
for two incoming real photons, but not if one is virtual. Some of the new options
agree with previous ones, but are included to allow a more consistent pattern.

Further options above 25 have been added also to include DIS processes.

a photon is assumed to be point-like (a direct photon), i.e. can only
interact in processes which explicitly contain the incoming photon, such
as f;7 — fig for yp interactions. In 7y interactions both photons are
direct, i.e the main process is vy — f;f;.

a photon is assumed to be resolved, i.e. can only interact through its
constituent quarks and gluons, giving either high-p | parton—parton scat-
terings or low-p,; events. Hard processes are calculated with the use of
the full photon parton distributions. In v interactions both photons are
resolved.

a photon is assumed resolved, but only the VMD piece is included in the
parton distributions, which therefore mainly are scaled-down versions
of the p°/7° ones. Both high-p, parton—parton scatterings and low-p
events are allowed. In 7 interactions both photons are VMD-like.

a photon is assumed resolved, but only the anomalous piece of the photon
parton distributions is included. (This event class is called either anoma-
lous or GVMD; we will use both interchangeably, though the former is
more relevant for high-p; phenomena and the latter for low-p, ones.) In
~7 interactions both photons are anomalous.

in 7 interactions one photon is direct and the other resolved. A typical
process is thus f;y — f;g. Hard processes are calculated with the use
of the full photon parton distributions for the resolved photon. Both
possibilities of which photon is direct are included, in event topologies
and in cross sections. This option cannot be used in configurations with
only one incoming photon.

in vy interactions one photon is direct and the other VMD-like. Both
possibilities of which photon is direct are included, in event topologies
and in cross sections. This option cannot be used in configurations with
only one incoming photon.

in v interactions one photon is direct and the other anomalous. Both
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=11 :
=12 :

= 13 :
= 14 :
= 15 :
= 16 :
= 17 :
= 18 :
= 19 :
= 20 :

=21 :
= 22 :
= 23 :
=24 .
= 25 :

= 26 :
= 27 :
= 28 :
= 29 :

Note 1:

Note 2:

Note 3:

possibilities of which photon is direct are included, in event topologies
and in cross sections. This option cannot be used in configurations with
only one incoming photon.

in 7y interactions one photon is VMD-like and the other anomalous.
Only high-p, parton—parton scatterings are allowed. Both possibilities
of which photon is VMD-like are included, in event topologies and in
cross sections. This option cannot be used in configurations with only
one incoming photon.

the VMD, direct and anomalous/GVMD components of the photon are
automatically mixed. For vp interactions, this means an automatic mix-
ture of the three classes 0, 2 and 3 above [Sch93, Sch93a], for 7+ ones
a mixture of the six classes 0, 2, 3, 5, 6 and 7 above [Sch94a]. Various
restrictions exist for this option, as discussed in section 8.3.1.

direct xdirect (see note 5); intended for virtual photons.

direct x VMD (i.e. first photon direct, second VMD); intended for virtual
photons.

direct xanomalous; intended for virtual photons.

VMD xdirect; intended for virtual photons.

VMDxVMD; intended for virtual photons.

VMD x anomalous; intended for virtual photons.

anomalous x direct; intended for virtual photons.

anomalousx VDM; intended for virtual photons.
anomalousxanomalous; intended for virtual photons.

a mixture of the nine above components, 11-19, in the same spirit as =10
provides a mixture for real gammas (or a virtual gamma on a hadron).
For gamma-hadron, this option coincides with =10.

direct xdirect (see note 5).

direct xresolved.

resolved x direct.

resolved xresolved.

a mixture of the four above components, offering a simpler alternative
to =20 in cases where the parton distributions of the photon have not
been split into VMD and anomalous components. For ~-hadron, only
two components need be mixed.

DISxVMD/p.

DIS xanomalous.

VMD /pxDIS.

anomalousx DIS.

a mixture of all the 4 (for v*p) or 13 (for v*y*) components that are
available, i.e. (the relevant ones of) 11-19 and 26-29 above; is as =20
with the DIS processes mixed in.

The MSTP(14) options apply for a photon defined by a ’gamma’ or
>gamma/lepton’ beam in the PYINIT call, but not to those photons im-
plicitly obtained in a ’lepton’ beam with the MSTP(12)=1 option. This
latter approach to resolved photons is more primitive and is no longer
recommended for QCD processes.

for real photons our best understanding of how to mix event classes is
provided by the option 10 above, which also can be obtained by combin-
ing three (for yp) or six (for 7v) separate runs. In a simpler alternative
the VMD and anomalous classes are joined into a single resolved class.
Then vp physics only requires two separate runs, with 0 and 1, and v
physics requires three, with 0, 1 and 4.

most of the new options from 11 onwards are not needed and there-
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fore not defined for ep collisions. The recommended ’best’ value thus is
MSTP (14)=30, which also is the new default value.

Note 4: as a consequence of the appearance of new event classes, the MINT (122)

and MSTI(9) codes are not the same for y*y* events as for yp, v*p or
77 ones. Instead the code is 3(i; — 1) + 49, where 7 is 1 for direct, 2 for
VMD and 3 for anomalous/GVMD and indices refer to the two incoming
photons. For v*p code 4 is DIS, and for v*v* codes 10-13 corresponds to
the MSTP(14) codes 26-29. As before, MINT(122) and MSTI(9) are only
defined when several processes are to be mixed, not when generating one
at a time. Also the MINT(123) code is modified (not shown here).

Note 5: The direct xdirect event class excludes lepton pair production when run

with the default MSEL=1 option (or MSEL=2), in order not to confuse
users. You can obtain lepton pairs as well, e.g. by running with MSEL=0
and switching on the desired processes by hand.

Note 6: For all non-QCD processes, a photon is assumed unresolved when

MSTP(15)

4

5 :

MSTP(16)

0 :
1:

MSTP(17)

N =

MSTP(14)= 10, 20 or 25. In principle, both the resolved and direct
possibilities ought to be explored, but this mixing is not currently im-
plemented, so picking direct at least will explore one of the two main
alternatives rather than none. Resolved processes can be accessed by the
more primitive machinery of having a lepton beam and MSTP(12)=1.
: (D=0) possibility to modify the nature of the anomalous photon component
(as used with the appropriate MSTP(14) options), in particular with respect
to the scale choices and cut-offs of hard processes. These options are mainly
intended for comparative studies and should not normally be touched. Some
of the issues are discussed in [Sch93a], while others have only been used for

internal studies and are undocumented.

none, i.e. the same treatment as for the VMD component.

evaluate the anomalous parton distributions at a scale Q?/PARP (17)2.

as =1, but instead of PARP(17) use either PARP(81)/PARP(15) or

PARP(82) /PARP(15), depending on MSTP(82) value.

evaluate the anomalous parton distribution functions of the photon as

fremem(y Q2 pa) — fremem(z, Q2 r2Q?) with r =PARP(17).

as =3, but instead of PARP(17) use either PARP(81)/PARP(15) or

PARP(82) /PARP(15), depending on MSTP(82) value.

use larger p|,in for the anomalous component than for the VMD one,

but otherwise no difference.
: (D=1) choice of definition of the fractional momentum taken by a photon
radiated off a lepton. Enters in the flux factor for the photon rate, and thereby
in cross sections.

x, i.e. energy fraction in the rest frame of the event.

y, i.e. light-cone fraction.
: (D=4) possibility of a extra factor for processes involving resolved virtual
photons, to approximately take into account the effects of longitudinal pho-
tons. Given on the form
R =1+ PARP(165) r(Q?, 1*) fr(y, Q%)/ fr(y, Q*).
Here the 1 represents the basic transverse contribution, PARP(165) is some
arbitrary overall factor, and f7/fr the (known) ratio of longitudinal to trans-
verse photon flux factors. The arbitrary function r depends on the photon
virtuality Q% and the hard scale u? of the process. See [Fri00] for a discussion
of the options.

No contribution, i.e. r = 0.

r=42Q% (1 + Q*)*.

r=4Q%/(1* + Q).
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Note:

MSTP(18)
=1 :

=2 :

MSTP (19)
=0 :

MSTP (20)

r=4Q/(mj + Q*).

r = 4m3.Q*/(m3 + Q%)?, where my is the vector meson mass for VMD
and 2k, for GVMD states. Since there is no p dependence here (as well
as for =3 and =5) also minimum-bias cross sections are affected, where
i would be vanishing. Currently the actual vector meson mass in the
VMD case is replaced by m,, for simplicity.

r=40Q?/(m3 + @Q?), with my and comments as above.

For a photon given by the ’gamma/lepton’ option in the PYINIT call, the
y spectrum is dynamically generated and y is thus known from event to
event. For a photon beam in the PYINIT call, y is unknown from the
onset, and has to be provided by you if any longitudinal factor is to be
included. So long as these values, in PARP(167) and PARP(168), are at
their default values, 0, it is assumed they have not been set and thus the
MSTP(17) and PARP(165) values are inactive.

: (D=3) choice of p, i, for direct processes.

same as for VMD and GVMD states, i.e. the p) pin(W?) scale. Primarily
intended for real photons.

D1 min 1S chosen to be PARP(15), i.e. the original old behaviour proposed in
[Sch93, Sch93a]. In that case, also parton distributions, jet cross sections
and «g values were dampened for small p,, so it may not be easy to
obtain full backwards compatibility with this option.

as =1, but if the @ scale of the virtual photon is above the VMD /GVMD
P1min(W?), Pimin is chosen equal to Q. This is part of the strategy to
mix in DIS processes at p; below ), e.g. in MSTP(14)=30.

: (D=4) choice of partonic cross section in the DIS process 99.

QPM answer 47%0em /Q - €2(zq(x, Q%) 4+ 2q(x, Q%)) (with parton dis-
tributions frozen below the lowest @) allowed in the parameterization).
Note that this answer is divergent for Q% — 0 and thus violates gauge
invariance.

QPM answer is modified by a factor Q*/(Q* + m) to provide a finite
cross section in the Q% — 0 limit. A minimal regularization recipe.
QPM answer is modified by a factor Q*/ (Q2+m2)2 to provide a vanishing
cross section in the Q% — 0 limit. Appropriate if one assumes that
the normal photoproduction description gives the total cross section for
Q? = 0, without any DIS contribution.

as = 2, but additionally suppression by a parameterized factor f(W?, Q?)
(different for ~*p and ~*v*) that avoids double-counting the direct-
process region where p; > (). Shower evolution for DIS events is then
also restricted to be at scales below (), whereas evolution all the way up
to W is allowed in the other options above.

as = 3, but additionally include factor 1/(1 — z) for conversion from F;,
to o. This is formally required, but is only relevant for small W2 and
therefore often neglected.

: (D=3) suppression of resolved (VMD or GVMD) cross sections, introduced

to compensate for an overlap with DIS processes in the region of intermediate

> 1 :
Note:

MSTP(21)

Q? and rather small W2,

no; used as is.

ves, by a factor (W?/(W? + Q3 + Q3))"STP(20) (where Q2 = 0 for an
incoming hadron).

the suppression factor is joined with the dipole suppression stored in
VINT(317) and VINT(318).

: (D=1) nature of fermion—fermion scatterings simulated in process 10 by t-
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MSTP (22)

MSTP (23)

0
1
2
=3 :
4
5

channel exchange.

all off (!).

full mixture of v*/Z° neutral current and W* charged current.
v neutral current only.

79 neutral current only.

v*/Z° neutral current only.

W charged current only.

: (D=0) special override of normal Q? definition used for maximum of parton-
shower evolution, intended for Deeply Inelastic Scattering in lepton—hadron

event

s, see section 10.4.

: (D=1) for Deeply Inelastic Scattering processes (10 and 83), this option

allow:
final

s the o and Q? of the original hard scattering to be retained by the
electron when showers are considered (with warnings as below; partly

obsolete).

Note 1:

Note 2:

MSTP (25)

=0 :

no correction procedure, i.e. x and Q? of the scattered electron differ
from the originally generated = and Q2.

post facto correction, i.e. the change of electron momentum, by initial
and final QCD radiation, primordial k£, and beam remnant treatment,
is corrected for by a shuffling of momentum between the electron and
hadron side in the final state. Only process 10 is corrected, while process
83 is not.

as =1, except that both process 10 and 83 are treated. This option is
dangerous, especially for top, since it may well be impossible to ‘correct’
in process 83: the standard DIS kinematics definitions are based on the
assumption of massless quarks. Therefore infinite loops are not excluded.
the correction procedure will fail for a fraction of the events, which are
thus rejected (and new ones generated in their place). The correction op-
tion is not unambiguous, and should not be taken too seriously. For very
small Q? values, the z is not exactly preserved even after this procedure.
This switch does not affect the recommended DIS description obtained
with a ’gamma/lepton’ beam/target in PYINIT, where x and Q* are al-
ways conserved.

: (D=0) angular decay correlations in Higgs decays to WTW~ or Z°Z° to four

fermi

=1 :
=2 :
=3 :

Note :

MSTP(31)

=0 :

ons [Skj93].

assuming the Higgs decay is pure scalar for h® and H° and pure pseu-
doscalar for AY.

assuming the Higgs decay is always pure scalar (CP-even).

assuming the Higgs decay is always pure pseudoscalar (CP-odd).
assuming the Higgs decay is a mixture of the two (CP-even and CP-
odd), including the CP-violating interference term. The parameter 7,
PARP(25) sets the strength of the CP-odd admixture, with the interfer-
ence term being proportional to  and the CP-odd one to n?.

since the decay of an A to WHW~ or Z°Z° is vanishing at the Born level,
and no loop diagrams are included, currently this switch is only relevant
for h® and HP. It is mainly intended to allow ‘straw man’ studies of the
quantum numbers of a Higgs state, decoupled from the issue of branching
ratios.

: (D=1) parameterization of total, elastic and diffractive cross sections.

everything is to be set by you yourself in the PYINT7 common block. For
photoproduction, additionally you need to set VINT(281). Normally you
would set these values once and for all before the PYINIT call, but if you
run with variable energies (see MSTP(171)) you can also set it before each
new PYEVNT call.
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1 :

MSTP (32)

©O© 00N O dkWN -

[
o

Donnachie-Landshoff for total cross section [Don92], and Schuler—

Sjostrand for elastic and diffractive cross sections [Sch94, Sch93al.
: (D=8) @Q? definition in hard scattering for 2 — 2 processes. For resonance
production ? is always chosen to be § = m%, where mp is the mass of the res-
onance. For gauge boson scattering processes VV — VV the W or Z° squared
mass is used as scale in parton distributions. See PARP(34) for a possibility to
modify the choice below by a multiplicative factor.
The newer options 6-10 are specifically intended for processes with incoming
virtual photons. These are ordered from a ‘minimal” dependence on the virtu-
alities to a ‘maximal’ one, based on reasonable kinematics considerations. The
old default value MSTP(32)=2 forms the starting point, with no dependence
at all, and the new default is some intermediate choice. Notation is that P?
and P§ are the virtualities of the two incoming particles, p, the transverse
momentum of the scattering process, and ms and my4 the masses of the two
outgoing partons. For a direct photon, P? is the photon virtuality and = = 1.
For a resolved photon, P? still refers to the photon, rather than the unknown
virtuality of the reacting parton in the photon, and x is the momentum fraction
taken by this parton.
Q? = 25tu/ (82 + 12+ 42).
Q° = (mis+mi,)/2=pt + (m3+mi)/2.
Q?* = min(—t, —1).
Q? = 3.
Q* = —t.
Q= (1421 P7/s + 22P5/5)(pT +m3/2 + mi/2).
Q= (1+ P25+ P/3)(p + mi/2 -+ mi/2).
Q= p] + (B + Py + mg + mj) /2.
Q% =pi + PP+ P§+mj +mi.
Q? = s (the full energy-squared of the process).

Note options 6 and 7 are motivated by assuming that one wants a scale that

MSTP(33)

0 :
1:
2 :

3 :

MSTP(34)

0 :
1:

interpolates between £ for small ¢ and @ for small @, such as Q> = —ta/(+
@). When kinematics for the 2 — 2 process is constructed as if an
incoming photon is massless when it is not, it gives rise to a mismatch
factor 1+P2%/5 (neglecting the other masses) in this Q? definition, which is
then what is used in option 7 (with the neglect of some small cross-terms
when both photons are virtual). When a virtual photon is resolved, the
virtuality of the incoming parton can be anything from 2 P? and upwards.
So option 6 uses the smallest kinematically possible value, while 7 is more
representative of the typical scale. Option 8 and 9 are more handwaving
extensions of the default option, with 9 specially constructed to ensure
that the Q? scale is always bigger than P2.
: (D=0) inclusion of K factors in hard cross sections for parton-parton inter-
actions (i.e. for incoming quarks and gluons).
none, i.e. K = 1.
a common K factor is used, as stored in PARP(31).
separate factors are used for ordinary (PARP(31)) and colour annihilation
graphs (PARP(32)).
A K factor is introduced by a shift in the ay Q* argument, oy =
o (PARP(33) Q?).
: (D=1) use of interference term in matrix elements for QCD processes, see
section 8.2.1.
excluded (i.e. string-inspired matrix elements).
included (i.e. conventional QCD matrix elements).

Note: for the option MSTP(34)=1, i.e. interference terms included, these terms

194



are divided between the different possible colour configurations according
to the pole structure of the (string-inspired) matrix elements for the
different colour configurations.

MSTP(35) : (D=0) threshold behaviour for heavy-flavour production, i.e. ISUB = 81, 82,
84, 85, and also for Z and Z’' decays. The non-standard options are mainly
intended for top, but can be used, with less theoretical reliability, also for
charm and bottom (for Z and Z’ only top and heavier flavours are affected).

The threshold factors are given in egs. (137) and (138).

naive lowest-order matrix-element behaviour.

enhancement or suppression close to threshold, according to the colour
structure of the process. The ay value appearing in the threshold factor
(which is not the same as the ag of the lowest-order 2 — 2 process) is
taken to be fixed at the value given in PARP(35). The threshold factor
used in an event is stored in PARI(81).

as =1, but the ag value appearing in the threshold factor is taken to

be running, with argument Q? = mQ\/(ﬁz —2mq)? +Tq. Here mq is
the nominal heavy-quark mass, I'q is the width of the heavy-quark-mass
distribution, and m is the invariant mass of the heavy-quark pair. The
I'q value has to be stored by you in PARP(36). The regularization of oy
at low Q? is given by MSTP(36).

MSTP(36) : (D=2) regularization of a in the limit @Q* — 0 for the threshold factor ob-
tainable in the MSTP (35)=2 option; see MSTU(115) for a list of the possibilities.

MSTP(37) : (D=1) inclusion of running quark masses in Higgs production (qq — h°)
and decay (h® — qq) couplings, obtained by calls to the PYMRUN function.
Also included for charged Higgs and technipion production and decay.

not included, i.e. fixed quark masses are used according to the values in
the PMAS array.

included, with running starting from the value given in the PMAS array, at
a )y scale of PARP(37) times the quark mass itself, up to a () scale given
by the Higgs mass. This option only works when oy is allowed to run
(so one can define a A value). Therefore it is only applied if additionally
MSTP(2)> 1.

MSTP(38) : (D=5) handling of quark loop masses in the box graphs gg — v and gg —
g7, and in the Higgs production loop graphs qq — gh qg — gh® and gg —
gh0 and their equivalents with H® or A° instead of h°.

Warning:

for gg — vy and gg — g7 the program will for each flavour automat-
ically choose the massless approximation for light quarks and the full
massive formulae for heavy quarks, with a dividing line between light
and heavy quarks that depends on the actual § scale. For Higgs produc-
tion, all quark loop contributions are included with the proper masses.
This option is then correct only in the Standard Model Higgs scenario,
and should not be used e.g. in the MSSM.

for gg — v and gg — g7y the program will use the massless approxima-
tion throughout, assuming the presence of MSTP(38) effectively massless
quark species (however, at most 8). Normally one would use =5 for the
inclusion of all quarks up to bottom, and =6 to include top as well. For
Higgs production, the approximate expressions derived in the m; — oo
limit are used, rescaled to match the correct gg — h®/HY/A° cross sec-
tions. This procedure should work, approximately, also for non-standard
Higgs particles.

for =0, numerical instabilities may arise in gg — vy and gg — g7y for
scattering at small angles. You are therefore recommended in this case
to set CKIN(27) and CKIN(28) so as to exclude the range of scattering
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angles that is not of interest anyway. Numerical problems may also occur
for Higgs production with =0, and additionally the lengthy expressions
make the code error-prone.

MSTP(39) : (D=2) choice of @?* scale for parton distributions and initial state parton

=1

=3 :

4
=5 :

2
mQ.

showers in processes gg — QQh or qq — QQh.

maX(min mi@) = m(Qg + max(piQapiQ)-

m3, where my, is the actual Higgs mass of the event, fluctuating from one
event to the next.

§ = (pn +pq +1g)*

m3, where my, is the nominal, fixed Higgs mass.

MSTP(40) : (D=0) option for Coulomb correction in process 25, WHW™ pair production,
see [Kho96]. The value of the Coulomb correction factor for each event is stored
in VINT(95).

Note :

‘no Coulomb’. Is the often-used reference point.

‘unstable Coulomb’, gives the correct first-order expression valid in the
non-relativistic limit. Is the reasonable option to use as a ‘best bet’
description of LEP 2 physics.

‘second-order Coulomb’ gives the correct second-order expression valid
in the non-relativistic limit. In principle this is even better than =1, but
the differences are negligible and computer time does go up because of
the need for a numerical integration in the weight factor.

‘dampened Coulomb’, where the unstable Coulomb expression has been
modified by a (1 — 3)? factor in front of the arctan term. This is in-
tended as an alternative to =1 within the band of our uncertainty in the
relativistic limit.

‘stable Coulomb’, i.e. effects are calculated as if the W’s were stable. Is
incorrect, and mainly intended for comparison purposes.

Unfortunately the W’s at LEP 2 are not in the non-relativistic limit,
so the separation of Coulomb effects from other radiative corrections is
not gauge invariant. The options above should therefore be viewed as
indicative only, not as the ultimate answer.

MSTP(41) : (D=2) master switch for all resonance decays (Z°, W=, t, h® Z° W'* HO

=0 :

Warning:

A% H* L, R%, d*, u*, ...).

all off.

all on.

on or off depending on their individual MDCY values.

also for MSTP(41)=1 it is possible to switch off the decays of specific
resonances by using the MDCY (KC, 1) switches in PYTHIA. However, since
the MDCY values are overwritten in the PYINIT call when MSTP(41)=1 (or
0), individual resonances should then be switched off after the PYINIT
call.

for top, leptoquark and other colour-carrying resonances it is danger-
ous to switch off decays if one later on intends to let them decay (with
PYEXEC); see section 8.6.4.

MSTP(42) : (D=1) mass treatment in 2 — 2 processes, where the final-state resonances
have finite width (see PARP(41)). (Does not apply for the production of a single
s-channel resonance, where the mass appears explicitly in the cross section of
the process, and thus is always selected with width.)

=0 :
=1

particles are put on the mass shell.
mass generated according to a Breit-Wigner.

MSTP(43) : (D=3) treatment of Z°/~* interference in matrix elements. So far imple-
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MSTP (44

A

MSTP (46)

=0 :

MSTP (47)

=0 :

=1 :

MSTP (48)

=0 :

W N -

Il
~NOo O WwN -

mented in subprocesses 1, 15, 19, 22, 30 and 35; in other processes what is
called a Z° is really a Z° only, without the ~* piece.

only v* included.
only Z° included.
complete Z°/v* structure (with interference) included.

: (D=7) treatment of Z"°/Z°/~* interference in matrix elements.

only v* included.

only Z° included.

only Z" included.

only Z°/~* (with interference) included.

only Z"°/+* (with interference) included.

only Z"°/Z° (with interference) included.

complete Z"°/Z° /v* structure (with interference) included.

. (D=3) treatment of WW — WW structure (ISUB = 77).

only WHW* — WrW* and W-W~ — W-W~ included.
only WHW~ — WH+W~ included.
all charge combinations WW — WW included.

: (D=1) treatment of VV — V'V’ structures (ISUB = 71-77), where V repre-
sents a longitudinal gauge boson.

only s-channel Higgs exchange included (where existing). With this op-
tion, subprocesses 71-72 and 7677 will essentially be equivalent to sub-
processes 5 and 8, respectively, with the proper decay channels (i.e. only
Z°7° or WTW™) set via MDME. The description obtained for subprocesses
5 and 8 in this case is more sophisticated, however; see section 8.5.2.

all graphs contributing to V'V — V'V’ processes are included.

only graphs not involving Higgs exchange (either in s, ¢ or u channel) are
included; this option then gives the naive behaviour one would expect if
no Higgs exists, including unphysical unitarity violations at high energies.
the strongly interacting Higgs-like model of Dobado, Herrero and Ter-
ron [Dob91] with Padé unitarization. Note that to use this option it
is necessary to set the Higgs mass to a large number like 20 TeV (i.e.
PMAS(25,1)=20000). The parameter v is stored in PARP (44), but should
not have to be changed.

as =3, but with K-matrix unitarization [Dob91].

the strongly interacting QCD-like model of Dobado, Herrero and Terron
[Dob91] with Padé unitarization. The parameter v is stored in PARP (44),
but should not have to be changed. The effective techni-p mass in this
model is stored in PARP(45); by default it is 2054 GeV, which is the
expected value for three technicolors, based on scaling up the ordinary p
mass appropriately.

as =5, but with K-matrix unitarization [Dob91]. While PARP (45) still is
a parameter of the model, this type of unitarization does not give rise to
a resonance at a mass of PARP(45).

(D=1) (C) angular orientation of decay products of resonances (Z°, W%, t,
ho, 7 W'£, etc.), either when produced singly or in pairs (also from an h°

), or in combination with a single quark, gluon or photon.

independent decay of each resonance, isotropic in c.m. frame of the res-
onance.

correlated decay angular distributions according to proper matrix ele-
ments, to the extent these are implemented.

: (D=0) (C) switch for the treatment of */Z° decay for process 1 in e*e~
events.

normal machinery.
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if the decay of the Z° is to either of the five lighter quarks, d, u, s, ¢ or b,
the special treatment of Z° decay is accessed, including matrix element
options, according to section 6.1.

This option is based on the machinery of the PYEEVT and associated rou-
tines when it comes to the description of QCD multijet structure and the
angular orientation of jets, but relies on the normal PYEVNT machinery for
everything else: cross section calculation, initial state photon radiation,
flavour composition of decays (i.e. information on channels allowed), etc.
The initial state has to be ete™; forward-backward asymmetries would
not come out right for quark-annihilation production of the v*/Z° and
therefore the machinery defaults to the standard one in such cases.

You can set the behaviour for the MSTP(48) option using the normal
matrix element related switches. This especially means MSTJ(101) for
the selection of first- or second-order matrix elements (=1 and =2, respec-
tively). Further selectivity is obtained with the switches and parameters
MSTJ(102) (for the angular orientation part only), MSTJ(103) (except the
production threshold factor part), MSTJ(106), MSTJ(108) - MSTJ(111),
PARJ(121), PARJ(122), and PARJ(125) - PARJ(129). Information
can be read from MSTJ(120), MSTJ(121), PARJ(150), PARJ(152) -
PARJ(156), PARJ(168), PARJ(169), PARJ(171).

The other eTe™ switches and parameters should not be touched. In most
cases they are simply not accessed, since the related part is handled by
the PYEVNT machinery instead. In other cases they could give incor-
rect or misleading results. Beam polarization as set by PARJ(131) -
PARJ(134), for instance, is only included for the angular orientation, but
is missing for the cross section information. PARJ(123) and PARJ(124)
for the Z° mass and width are set in the PYINIT call based on the input
mass and calculated widths.

The cross section calculation is unaffected by the matrix element ma-
chinery. Thus also for negative MSTJ(101) values, where only specific jet
multiplicities are generated, the PYSTAT cross section is the full one.

MSTP(49) : (D=1) assumed variation of the Higgs width to massive gauge boson pairs,
i.e. WHW—, Z9Z° and W*Z0, as a function of the actual mass 7 = v/§ and the

Note 1:

Note 2:

nominal mass my,. The switch applies both to h?, H°, A° and H* decays.

the width is proportional to m?; thus the high-mass tail of the Breit-
Wigner is enhanced.

the width is proportional to mZm. For a fixed Higgs mass my, this means
a width variation across the Breit-Wigner more in accord with other
resonances (such as the Z°). This alternative gives more emphasis to
the low-mass tail, where the parton distributions are peaked (for hadron
colliders). This option is favoured by resummation studies [Sey95a].

the partial width of a Higgs to a fermion pair is always taken to be
proportional to the actual Higgs mass m, irrespectively of MSTP(49).
Also the width to a gluon or photon pair (via loops) is unaffected.

this switch does not affect processes 71-77, where a fixed Higgs width is
used in order to control cancellation of divergences.

MSTP(50) : (D=0) Switch to allow or not longitudinally polarized incoming beams, with
the two polarizations stored in PARJ(131) and PARJ(132), respectively. Most
cross section expressions with polarization reduce to the unpolarized behaviour
for the default PARJ(131)=PARJ(132)=0, and then this switch is not imple-
mented. Currently it is only used in process 25, ff — WTW~, for reasons
explained in subsection 8.8.

no polarization effects, no matter what PARJ(131) and PARJ(132) values
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are set.
include polarization information in the cross section of the process and
for angular correlations.

MSTP(51) : (D=T7) choice of proton parton-distribution set; see also MSTP(52).

CTEQ 3L (leading order).

CTEQ 3M (MS).

CTEQ 3D (DIS).

GRV 94L (leading order).

GRV 94M (MS).

GRV 94D (DIS).

CTEQ 5L (leading order).

CTEQ 5M1 (MS; slightly update version of CTEQ 5M).

GRV 92L (leading order).

EHLQ set 1 (leading order; 1986 updated version).

EHLQ set 2 (leading order; 1986 updated version).

Duke-Owens set 1 (leading order).

Duke-Owens set 2 (leading order).

simple ansatz with all parton distributions of the form ¢/x, with ¢ some
constant; intended for internal debug use only.

distributions 11-15 are obsolete and should not be used for current
physics studies. They are only implemented to have some sets in common
between PYTHIA 5 and 6, for cross-checks.

since all parameterizations have some region of applicability, the par-
ton distributions are assumed frozen below the lowest Q? covered by
the parameterizations. In some cases, evolution is also frozen above the
maximum Q2.

MSTP(52) : (D=1) choice of proton parton-distribution-function library.

=1 :
=2 :

Note:

Warning:

the internal PYTHIA one, with parton distributions according to the
MSTP (51) above.

the PDFLIB one [Plo93], with the PDFLIB (version 4) NGROUP and NSET
numbers to be given as MSTP(51) = 1000xNGROUP + NSET.

to make use of option 2, it is necessary to link PDFLIB. Additionally,
on most computers, the three dummy routines PDFSET, STRUCTM and
(for virtual photons) STRUCTP at the end of the PyTHIA file should be
removed or commented out.

For external parton distribution libraries, PYTHIA does not check
whether MSTP(51) corresponds to a valid code, or if special z and Q? re-
strictions exist for a given set, such that crazy values could be returned.
This puts an extra responsibility on you.

MSTP(53) : (D=3) choice of pion parton-distribution set; see also MSTP(54).

=1 :
=2 :
=3 :

Owens set 1.
Owens set 2.
GRV LO (updated version).

MSTP(54) : (D=1) choice of pion parton-distribution-function library.

=1 :
=2 :

Note:

Warning:

the internal PYTHIA one, with parton distributions according to the
MSTP (53) above.

the PDFLIB one [Plo93], with the PDFLIB (version 4) NGROUP and NSET
numbers to be given as MSTP(53) = 1000xNGROUP + NSET.

to make use of option 2, it is necessary to link PDFLIB. Additionally,
on most computers, the three dummy routines PDFSET, STRUCTM and
STRUCTP at the end of the PyTHIA file should be removed or commented
out.

For external parton distribution libraries, PYTHIA does not check
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whether MSTP (53) corresponds to a valid code, or if special z and Q? re-
strictions exist for a given set, such that crazy values could be returned.
This puts an extra responsibility on you.

MSTP(55) : (D=b5) choice of the parton-distribution set of the photon; see also MSTP (56)

Note 2:

Note 3:

MSTP (56)
=1 :

=2 :

and MSTP(60).

Drees—Grassie.

SaS 1D (in DIS scheme, with Qy = 0.6 GeV).
SaS 1M (in MS scheme, with Qy = 0.6 GeV).
SaS 2D (in DIS scheme, with Qy = 2 GeV).

SaS 2M (in MS scheme, with Qy = 2 GeV).
SaS 1D (in DIS scheme, with Qy = 0.6 GeV).
SaS 1M (in MS scheme, with @y = 0.6 GeV).

SaS 2D (in DIS scheme, with Qy = 2 GeV).

SaS 2M (in MS scheme, with Qy = 2 GeV).

sets 58 use the parton distributions of the respective set, and nothing
else. These are appropriate for most applications, e.g. jet production in
~vp and ¥ collisions. Sets 9-12 instead are appropriate for v*~v processes,
i.e. DIS scattering on a photon, as measured in F3. Here the anomalous
contribution for ¢ and b quarks are handled by the Bethe-Heitler for-
mulae, and the direct term is artificially lumped with the anomalous
one, so that the event simulation more closely agrees with what will
be experimentally observed in these processes. The agreement with the
F) parameterization is still not perfect, e.g. in the treatment of heavy
flavours close to threshold.

Sets 5-12 contain both VMD pieces and anomalous pieces, separately
parameterized. Therefore the respective piece is automatically called,
whatever MSTP(14) value is used to select only a part of the allowed
photon interactions. For other sets (set 1 above or PDFLIB sets), usually
there is no corresponding subdivision. Then an option like MSTP (14)=2
(VMD part of photon only) is based on a rescaling of the pion distribu-
tions, while MSTP(14)=3 gives the SaS anomalous parameterization.
Formally speaking, the ko (or po) cut-off in PARP(15) need not be set in
any relation to the @)y cut-off scales used by the various parameteriza-
tions. Indeed, due to the familiar scale choice ambiguity problem, there
could well be some offset between the two. However, unless you know
what you are doing, it is recommended that you let the two agree, i.e.
set PARP(15)=0.6 for the SaS 1 sets and =2. for the SaS 2 sets.

: (D=1) choice of photon parton-distribution-function library.

the internal PYTHIA one, with parton distributions according to the
MSTP (55) above.

the PDFLIB one [Plo93], with the PDFLIB (version 4) NGROUP and NSET
numbers to be given as MSTP(55) = 1000xNGROUP + NSET. When the
VMD and anomalous parts of the photon are split, like for MSTP (14)=10,
it is necessary to specify pion set to be used for the VMD component, in
MSTP(53) and MSTP(54), while MSTP(55) here is irrelevant.

when the parton distributions of the anomalous photon are requested,
the homogeneous solution is provided, evolved from a starting value
PARP(15) to the requested @) scale. The homogeneous solution is nor-
malized so that the net momentum is unity, i.e. any factors of ep /27
and charge have been left out. The flavour of the original q is given in
MSTP(55) (1, 2, 3,4 or 5 for d, u, s, ¢ or b); the value 0 gives a mixture
according to squared charge, with the exception that ¢ and b are only
allowed above the respective mass threshold (¢) > my). The four-flavour
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A value is assumed given in PARP(1); it is automatically recalculated for
3 or 5 flavours at thresholds. This option is not intended for standard
event generation, but is useful for some theoretical studies.

Note: to make use of option 2, it is necessary to link PDFLIB. Additionally,

on most computers, the three dummy routines PDFSET, STRUCTM and
STRUCTP at the end of the PyTHIA file should be removed or commented
out.

Warning: For external parton-distribution libraries, PYTHIA does not check

MSTP (57)

0 :

1 :
2 :

MSTP (58)

MSTP (59)

MSTP (60)

~NOo oW N

1)

whether MSTP (55) corresponds to a valid code, or if special z and Q? re-
strictions exist for a given set, such that crazy values could be returned.
This puts an extra responsibility on you.
: (D=1) choice of Q? dependence in parton-distribution functions.
parton distributions are evaluated at nominal lower cut-off value Q2 i.e.
are made Q?-independent.
the parameterized Q? dependence is used.
the parameterized parton-distribution behaviour is kept at large Q% and
z, but modified at small Q? and/or x, so that parton distributions vanish
in the limit Q% — 0 and have a theoretically motivated small-z shape
[Sch93a]. This option is only valid for the p and n. It is obsolete within
the current ’gamma/lepton’ framework.
as =2, except that also the 7% is modified in a corresponding manner. A
VMD photon is not mapped to a pion, but is treated with the same pho-
ton parton distributions as for other MSTP(57) values, but with properly
modified behaviour for small z or 2. This option is obsolete within the
current ’gamma/lepton’ framework.
: (D=min(5, 2xMSTP (1) )) maximum number of quark flavours used in parton
distributions, and thus also for initial-state space-like showers. If some distri-
butions (notably t) are absent in the parameterization selected in MSTP(51),
these are obviously automatically excluded.
: (D=1) choice of electron-inside-electron parton distribution.
the recommended standard for LEP 1, next-to-leading exponentiated, see
[Kl1e89], p. 34.
the recommended ‘3’ scheme for LEP 2, also next-to-leading exponenti-
ated, see [Bee96], p. 130.
: (D=T) extension of the SaS real-photon distributions to off-shell photons,
especially for the anomalous component. See [Sch96] for an explanation of
the options. The starting point is the expression in eq. (48), which requires
a numerical integration of the anomalous component, however, and therefore
is not convenient. Approximately, the dipole damping factor can be removed
and compensated by a suitably shifted lower integration limit, whereafter the
integral simplifies. Different ‘goodness’ criteria for the choice of the shifted

lower limit is represented by the options 2-7 below.

dipole dampening by integration; very time-consuming.

P} = max(Q3, P?).

P'§ = Q3 + P2,

P.¢ that preserves momentum sum.

P, that preserves momentum and average evolution range.
P.g, matched to Py in P? — Q? limit.

P, matched to Py in P? — ? limit.

: (D=1) (C) master switch for initial-state QCD and QED radiation.

off.

on.

MSTP(62) - MSTP(69) : (C) further switches for initial-state radiation, see section 10.4.
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MSTP(71) : (D=1) (C) master switch for final-state QCD and QED radiation.

=0 : off.
=1: on.
Note: additional switches (e.g. for conventional /coherent showers) are available

in MSTJ(38) - MSTJ(50) and PARJ(80) - PARJ(90), see section 10.4.

MSTP(81) : (D=1) master switch for multiple interactions.

=0 : off.

=1 : on.
MSTP(82) - MSTP(86) : further switches for multiple interactions, see section 11.5.
MSTP(91) - MSTP(95) : switches for beam remnant treatment, see section 11.5.
MSTP(101) : (D=3) (C) structure of diffractive system.

=1 : forward moving diquark + interacting quark.

=2 : forward moving diquark + quark joined via interacting gluon (‘hairpin’
configuration).
=3: a mixture of the two options above, with a fraction PARP(101) of the

former type.
MSTP(102) : (D= 1) (C) decay of a p” meson produced by ‘elastic’ scattering of an incom-
mg v, as in 7p — pp, or the same with the hadron dlffractlvely excited.
=0 : the p¥ is allowed to decay isotropically, like any other p°.
=1 : the decay p° — 77~ is done with an angular distribution proportional
to sin? @ in its rest frame, where the z axis is given by the direction of
motion of the p°. The p° decay is then done as part of the hard process,
i.e. also when MSTP(111)=0.

MSTP(110) : (D=0) switch to allow some or all resonance widths to be modified by the
factor PARP(110). This is not intended for serious physics studies. The main
application is rather to generate events with an artificially narrow resonance
width in order to study the detector-related smearing effects on the mass res-

olution.
>0 : rescale the particular resonance with KF = MSTP(110). If the resonance
has an antiparticle, this one is affected as well.
= -1 :  rescale all resonances, except t, t, Z° and W+*.
= -2 : rescale all resonances.

Warnlng Only resonances with a width evaluated by PYWIDT are affected, and
preferentially then those with MWID value 1 or 3. For other resonances
the appearance of effects or not depends on how the cross sections have
been implemented. So it is important to check that indeed the mass
distribution is affected as expected. Also beware that, if a sequential
decay chain is involved, the scaling may become more complicated. Fur-
thermore, depending on implementational details, a cross section may or
may not scale with PARP(110) (quite apart from differences related to
the convolution with parton distributions etc.). All in all, it is then an
option to be used only with open eyes, and for very specific applications.

MSTP(111) : (D=1) (C) master switch for fragmentation and decay, as obtained with a
PYEXEC call.

=0 : off.
=1: on.
= -1 : only choose kinematical variables for hard scattering, i.e. no jets are de-

fined. This is useful, for instance, to calculate cross sections (by Monte
Carlo integration) without wanting to simulate events; information ob-
tained with PYSTAT (1) will be correct.
MSTP(112) : (D=1) (C) cuts on partonic events; only affects an exceedingly tiny fraction
of events. Normally this concerns what happens in the PYPREP routine, if a
colour singlet subsystem has a very small invariant mass and attempts to

202



=0 :

=1

MSTP(113)

=0 :

=1

MSTP(115)

|
[

MSTP (121)

=0 :

=1

MSTP (122)

collapse it to a single particle fail, see section 12.4.1.

no cuts (can be used only with independent fragmentation, at least in
principle).
string cuts (as normally required for fragmentation).

: (D=1) (C) recalculation of energies of partons from their momenta and
masses, to be done immediately before and after fragmentation, to partly com-
pensate for some numerical problems appearing at high energies.

not performed.
performed.

: (D=0) (C) choice of colour rearrangement scenario for process 25, WHW~=
pair production, when both W’s decay hadronically. (Also works for process
22, 7°7° production, except when the Z’s are allowed to fluctuate to very small
masses.) See section 12.4.2 for details.

no reconnection.

scenario I, reconnection inspired by a type I superconductor, with the
reconnection probability related to the overlap volume in space and time
between the W+ and W~ strings. Related parameters are found in
PARP(115) - PARP(119), with PARP(117) of special interest.

scenario II, reconnection inspired by a type II superconductor, with re-
connection possible when two string cores cross. Related parameter in
PARP(115).

scenario II’, as model II but with the additional requirement that a re-
connection will only occur if the total string length is reduced by it.

the GH scenario, where the reconnection can occur that reduces the total
string length (A measure) most. PARP(120) gives the fraction of such
event where a reconnection is actually made; since almost all events could
allow a reconnection that would reduce the string length, PARP(120) is
almost the same as the reconnection probability.

the intermediate scenario, where a reconnection is made at the ‘origin’ of
events, based on the subdivision of all radiation of a qq system as coming
either from the q or the q. PARP(120) gives the assumed probability that
a reconnection will occur. A somewhat simpleminded model, but not
quite unrealistic.

the instantaneous scenario, where a reconnection is allowed to occur be-
fore the parton showers, and showering is performed inside the recon-
nected systems with maximum virtuality set by the mass of the recon-
nected systems. PARP(120) gives the assumed probability that a recon-
nection will occur. Is completely unrealistic, but useful as an extreme
example with very large effects.

: (D=0) calculation of kinematics selection coefficients and differential cross
section maxima for included (by you or default) subprocesses.

not known; to be calculated at initialization.

not known; to be calculated at initialization; however, the maximum
value then obtained is to be multiplied by PARP(121) (this may be useful
if a violation factor has been observed in a previous run of the same kind).
known; kinematics selection coefficients stored by you in COEF (ISUB,J)
(J = 1-20) in common block PYINT2 and maximum of the corresponding
differential cross section times Jacobians in XSEC(ISUB,1) in common
block PYINT5. This is to be done for each included subprocess ISUB
before initialization, with the sum of all XSEC(ISUB, 1) values, except for
ISUB = 95, stored in XSEC(0,1).

: (D=1) initialization and differential cross section maximization print-out.
Also, less importantly, level of information on where in phase space a cross

203



section maximum has been violated during the run.

=0 : none.

=1 : short message at initialization; only when an error (i.e. not a warning) is
generated during the run.

=2 : detailed message, including full maximization., at initialization; always
during run.

MSTP(123) : (D=2) reaction to violation of maximum differential cross section or to oc-
curence of negative differential cross sections (except when allowed for external
processes, i.e. when IDWTUP < 0).
0 stop generation, print message.
=1 : continue generation, print message for each subsequently larger violation.
=2 : as =1, but also increase value of maximum.
MSTP(124) : (D=1) (C) frame for presentation of event.

=1: as specified in PYINIT.

=2 : c.m. frame of incoming particles.

=3: hadronic c.m. frame for DIS events, with warnings as given for PYFRAM.
MSTP(125) : (D=1) (C) documentation of partonic process, see section 5.3.2 for de-

tails.

=0 : only list ultimate string/particle configuration.

=1 : additionally list short summary of the hard process.

=2 list complete documentation of intermediate steps of parton-shower evo-

lution.

MSTP(126) : (D=100) number of lines at the beginning of event record that are reserved
for event-history information; see section 5.3.2. This value should never be
reduced, but may be increased at a later date if more complicated processes
are included.

MSTP(127) : (D=0) possibility to continue run even if none of the requested processes
have non-vanishing cross sections.

=0 : no, the run will be stopped in the PYINIT call.

=1 : yes, the PYINIT execution will finish normally, but with the flag
MSTI(53)=1 set to signal the problem. If nevertheless PYEVNT is called
after this, the run will be stopped, since no events can be generated. If
instead a new PYINIT call is made, with changed conditions (e.g. mod-
ified supersymmetry parameters in a SUSY run), it may now become
possible to initialize normally and generate events.

MSTP(128) : (D=0) storing of copy of resonance decay products in the documentation
section of the event record, and mother pointer (K(I,3)) relation of the actual
resonance decay products (stored in the main section of the event record) to
the documentation copy.

=0 : products are stored also in the documentation section, and each product
stored in the main section points back to the corresponding entry in the
documentation section.

=1 : products are stored also in the documentation section, but the products
stored in the main section point back to the decaying resonance copy in
the main section.

=2 : products are not stored in the documentation section; the products stored
in the main section point back to the decaying resonance copy in the main
section.

MSTP(129) : (D=10) for the maximization of 2 — 3 processes (ISET(ISUB)=5) each
phase-space point in 7, y and 7’ is tested MSTP (129) times in the other dimen-
sions (at randomly selected points) to determine the effective maximum in the
(1, y, 7') point.

MSTP(131) : (D=0) master switch for pile-up events, i.e. several independent hadron—
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=1

hadron interactions generated in the same bunch—bunch crossing, with the
events following one after the other in the event record. See subsection 11.4
for details.

0 :

off, i.e. only one event is generated at a time.
on, i.e. several events are allowed in the same event record. Information
on the processes generated may be found in MSTI(41) - MSTI(50).

MSTP(132) - MSTP(134) : further switches for pile-up events, see section 11.5.
: (D=0) calling of PYKCUT in the event-generation chain, for inclusion of
user-specified cuts.

MSTP(141)

=0 :

=1

MSTP (142)

not called.
called.

: (D=0) calling of PYEVWT in the event-generation chain, either to give
weighted events or to modify standard cross sections. See PYEVWT description

=2 :

MSTP(151)
=0 :

=1

MSTP(171)

=1

in section 9.1 for further details.

not called.

called; the distribution of events among subprocesses and in kinematics
variables is modified by the factor WTXS, set by you in the PYEVWT call,
but events come with a compensating weight PARI(10)=1./WTXS, such
that total cross sections are unchanged.

called; the cross section itself is modified by the factor WTXS, set by you
in the PYEVWT call.

: (D=0) introduce smeared position of primary vertex of events.

no, i.e. the primary vertex of each event is at the origin.

yes, with Gaussian distributions separately in z, y, z and t. The re-
spective widths of the Gaussians have to be given in PARP(151) -
PARP(154). Also pile-up events obtain separate primary vertices. No
provisions are made for more complicated beam-spot shapes, e.g. with a
spread in z that varies as a function of ¢. Note that a large beam spot
combined with some of the MSTJ(22) options may lead to many particles
not being allowed to decay at all.

: (D=0) possibility of variable energies from one event to the next. For
further details see section 9.8.

0 :

Warning:

MSTP (172)

=1

no; i.e. the energy is fixed at the initialization call.

yes; i.e. a new energy has to be given for each new event.

Variable energies cannot be used in conjunction with the internal
generation of a virtual photon flux obtained by a PYINIT call with
>gamma/lepton’ argument. The reason is that a variable-energy ma-
chinery is now used internally for the y-hadron or v subsystem, with
some information saved at initialization for the full energy.

: (D=2) options for generation of events with variable energies, applicable

when

MSTP(171)=1.

an event is generated at the requested energy, i.e. internally a loop is
performed over possible event configurations until one is accepted. If the
requested c.m. energy of an event is below PARP(2) the run is aborted.
Cross-section information can not be trusted with this option, since it
depends on how you decided to pick the requested energies.

only one event configuration is tried. If that is accepted, the event is
generated in full. If not, no event is generated, and the status code
MSTI(61)=1 is returned. You are then expected to give a new energy,
looping until an acceptable event is found. No event is generated if the
requested c.m. energy is below PARP(2), instead MSTI(61)=1 is set to
signal the failure. In principle, cross sections should come out correctly
with this option.
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MSTP(173) : (D=0) possibility for you to give in an event weight to compensate for a
biased choice of beam spectrum.
=0 : no, i.e. event weight is unity.
1 yes; weight to be given for each event in PARP(173), with maximum
weight given at initialization in PARP(174).

MSTP(181) : (R) PYTHIA version number.
MSTP(182) : (R) PYTHIA subversion number.
MSTP(183) : (R) last year of change for PYTHIA.
MSTP(184) : (R) last month of change for PYTHIA.

MSTP(185) : (R) last day of change for PYTHIA.

PARP(1) : (D=0.25 GeV) nominal Agcp used in running oy for hard scattering (see
MSTP(3)).

PARP(2) : (D=10. GeV) lowest c.m. energy for the event as a whole that the program
will accept to simulate.

PARP(13) : (D=1. GeV?) Q2. scale, to be set by you for defining maximum scale
allowed for photoproduction when using the option MSTP (13)=2.

PARP(14) : (D=0.01) in the numerical integration of quark and gluon parton distribu-
tions inside an electron, the successive halvings of evaluation-point spacing is
interrupted when two values agree in relative size, [new—old|/(new+old), to
better than PARP(14). There are hardwired lower and upper limits of 2 and 8
halvings, respectively.

PARP(15) : (D=0.5 GeV) lower cut-off py used to define minimum transverse momentum
in branchings v — qq in the anomalous event class of vp interactions, i.e. sets
the dividing line between the VMD and GVMD event classes.

PARP(16) : (D=1.) the anomalous parton-distribution functions of the photon are taken
to have the charm and bottom flavour thresholds at virtuality PARP (16) xm?l.

PARP(17) : (D=1.) rescaling factor used for the @) argument of the anomalous parton
distributions of the photon, see MSTP(15).

PARP(18) : (D=0.4 GeV) scale k,, such that the cross sections of a GVMD state of scale
k, is suppressed by a factor ki /K3 relative to those of a VMD state. Should
be of order m,/2, with some finetuning to fit data.

PARP(25) : (D=0.) parameter n describing the admixture of CP-odd Higgs decays for
MSTP (25)=3.

PARP(31) : (D=1.5) common K factor multiplying the differential cross section for hard
parton—parton processes when MSTP(33)=1 or 2, with the exception of colour
annihilation graphs in the latter case.

PARP(32) : (D=2.0) special K factor multiplying the differential cross section in hard
colour annihilation graphs, including resonance production, when MSTP (33)=2.

PARP(33) : (D=0.075) this factor is used to multiply the ordinary Q? scale in «y at the
hard interaction for MSTP(33)=3. The effective K factor thus obtained is in
accordance with the results in [ElI86], modulo the danger of double counting
because of parton-shower corrections to jet rates.

PARP(34) : (D=1.) the Q? scale defined by MSTP(32) is multiplied by PARP(34) when
it is used as argument for parton distributions and «ay at the hard interaction.
It does not affect g when MSTP(33)=3, nor does it change the ()? argument
of parton showers.

PARP(35) : (D=0.20) fix s value that is used in the heavy-flavour threshold factor when
MSTP(35)=1.

PARP(36) : (D=0. GeV) the width I'q for the heavy flavour studied in processes ISUB
= 81 or 82; to be used for the threshold factor when MSTP (35)=2.

PARP(37) : (D=1.) for MSTP(37)=1 this regulates the point at which the reference
on-shell quark mass in Higgs and technicolor couplings is assumed defined
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PARP(38)

PARP(39)

PARP(41)

PARP (42)

PARP (43)
PARP (44)

PARP (45)

PARP (46)

PARP (47)

PARP (48)

PARP (50)

PARP(61)
PARP(71)
PARP(78)
PARP(91)

PARP(101)

PARP (102)

in PYMRUN calls; specifically the running quark mass is assumed to coincide
with the fix one at an energy scale PARP(37) times the fix quark mass, i.e.
Myunning (PARP (37) XMy ) = mpy,. See discussion at eq. 90 on ambiguity of
PARP(37) choice.
: (D=0.70 GeV?) the squared wave function at the origin, |R(0)|?, of the J/v
wave function. Used for processes 86 and 106-108. See ref. [Glo88].
: (D=0.006 GeV?) the squared derivative of the wave function at the origin,
|R'(0)|2/m?, of the x. wave functions. Used for processes 87-89 and 104-105.
See ref. [Glo88].
: (D=0.020 GeV) in the process of generating mass for resonances, and op-
tionally to force that mass to be in a given range, only resonances with a total
width in excess of PARP(41) are generated according to a Breit—Wigner shape
(if allowed by MSTP (42) ), while narrower resonances are put on the mass shell.
: (D=2. GeV) minimum mass of resonances assumed to be allowed when
evaluating total width of h° to Z°Z° or W¥W~ for cases when the h® is so light
that (at least) one Z/W is forced to be off the mass shell. Also generally used
as safety check on minimum mass of resonance. Note that some CKIN values
may provide additional constraints.
: (D=0.10) precision parameter used in numerical integration of width for a
channel with at least one daughter off the mass shell.
: (D=1000.) the v parameter of the strongly interacting Z/W model of
Dobado, Herrero and Terron [Dob91].
: (D=2054. GeV) the effective techni-p mass parameter of the strongly inter-
acting model of Dobado, Herrero and Terron [Dob91]; see MSTP(46)=5. On
physical grounds it should not be chosen smaller than about 1 TeV or larger
than about the default value.
: (D=123. GeV) the F, decay constant that appears inversely quadratically
in all techni-n partial decay widths [Eic84, App92].
: (D=246. GeV) vacuum expectation value v used in the DHT scenario
[Dob91] to define the width of the techni-p; this width is inversely propor-
tional v2.
: (D=50.) the Breit-Wigner factor in the cross section is set to vanish for
masses that deviate from the nominal one by more than PARP(48) times the
nominal resonance width (i.e. the width evaluated at the nominal mass). Is
used in most processes with a single s-channel resonance, but there are some
exceptions, notably 7*/Z° and W*. The reason for this option is that the
conventional Breit-Wigner description is at times not really valid far away
from the resonance position, e.g. because of interference with other graphs
that should then be included. The wings of the Breit-Wigner can therefore be
removed.
: (D=0.054) dimensionless coupling, which enters quadratically in all partial
widths of the excited graviton G* resonance, is kmg« = \/ﬁxlk/ﬂpl, where
21 ~ 3.83 is the first zero of the .J; Bessel function and Mp, is the modified
Planck mass scale [Ran99, Bijo1].
- PARP(65) : (C) parameters for initial-state radiation, see section 10.4.
- PARP(72) : (C) parameter for final-state radiation, see section 10.4.
- PARP(90) : parameters for multiple interactions, see section 11.5.
- PARP(100) : parameters for beam remnant treatment, see section 11.5.
: (D=0.50) fraction of diffractive systems in which a quark is assumed kicked
out by the pomeron rather than a gluon; applicable for option MSTP(101)=3.
: (D=0.28 GeV) the mass spectrum of diffractive states (in single and double
diffractive scattering) is assumed to start PARP(102) above the mass of the
particle that is diffractively excited. In this connection, an incoming v is
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taken to have the selected VMD meson mass, i.e. m,, my,, Mg O My/y.

PARP(103) : (D=1.0 GeV) if the mass of a diffractive state is less than PARP(103) above
the mass of the particle that is diffractively excited, the state is forced to
decay isotropically into a two-body channel. In this connection, an incoming
7 is taken to have the selected VMD meson mass, i.e. m,, my, mg or my/,.
If the mass is higher than this threshold, the standard string fragmentation
machinery is used. The forced two-body decay is always carried out, also when
MSTP(111)=0.

PARP(104) : (D=0.8 GeV) minimum energy above threshold for which hadron-hadron
total, elastic and diffractive cross sections are defined. Below this energy, an
alternative description in terms of specific few-body channels would have been
required, and this is not modelled in PYTHIA.

PARP(110) : (D=1.) a rescaling factor for resonance widths, applied when MSTP (110 is
switched on.

PARP(111) : (D=2. GeV) used to define the minimum invariant mass of the remnant
hadronic system (i.e. when interacting partons have been taken away), together
with original hadron masses and extra parton masses. For a hadron or resolved
photon beam, this also implies a further constraint that the x of an interacting
parton be below 1 — 2 x PARP(111) / Eqp,.

PARP(115) : (D=1.5 fm) (C) the average fragmentation time of a string, giving the
exponential suppression that a reconnection cannot occur if strings decayed
before crossing. Is implicitly fixed by the string constant and the fragmentation
function parameters, and so a significant change is not recommended.

PARP(116) : (D=0.5fm) (C) width of the type I string, giving the radius of the Gaussian
distribution in x and y separately.

PARP(117) : (D=0.6) (C) ki, the main free parameter in the reconnection probability
for scenario I; the probability is given by PARP(117) times the overlap volume,
up to saturation effects.

PARP(118), PARP(119) : (D=2.5,2.0) (C) f. and f;, respectively, used in the Monte
Carlo sampling of the phase space volume in scenario I. There is no real reason
to change these numbers.

PARP(120) : (D=1.0) (D) (C) fraction of events in the GH, intermediate and instanta-
neous scenarios where a reconnection is allowed to occur. For the GH one a
further suppression of the reconnection rate occurs from the requirement of
reduced string length in a reconnection.

PARP(121) : (D=1.) the maxima obtained at initial maximization are multiplied by this
factor if MSTP(121)=1; typically PARP(121) would be given as the product of
the violation factors observed (i.e. the ratio of final maximum value to initial
maximum value) for the given process(es).

PARP(122) : (D=0.4) fraction of total probability that is shared democratically between
the COEF coefficients open for the given variable, with the remaining fraction
distributed according to the optimization results of PYMAXI.

PARP(131) : parameter for pile-up events, see section 11.5.

PARP(151) - PARP(154) : (D=4*0.) (C) regulate the assumed beam-spot size. For
MSTP(151)=1 the z, y, z and t coordinates of the primary vertex of each event
are selected according to four independent Gaussians. The widths of these
Gaussians are given by the four parameters, where the first three are in units
of mm and the fourth in mm/ec.

PARP(161) - PARP(164) : (D=2.20, 23.6, 18.4, 11.5) couplings f2/4m of the photon to
the p°, w, ¢ and J /¢ vector mesons.

PARP(165) : (D=0.5) a simple multiplicative factor applied to the cross section for the
transverse resolved photons to take into account the effects of longitudinal
resolved photons, see MSTP(17). No preferred value, but typically one could use
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PARP(165)=1 as main contrast to the no-effect =0, with the default arbitrarily
chosen in the middle.

PARP(167), PARP(168) : (D=2*0) the longitudinal energy fraction y of an incoming
photon, side 1 or 2, used in the R expression given for MSTP(17) to evalu-
ate fr(y,Q?)/fr(y,Q?). Need not be supplied when a photon spectrum is
generated inside a lepton beam, but only when a photon is directly given as
argument in the PYINIT call.

PARP(171) : to be set, event-by-event, when variable energies are allowed, i.e. when
MSTP(171)=1. If PYINIT is called with FRAME=’CMS’ (=’FIXT’), PARP(171)
multiplies the c.m. energy (beam energy) used at initialization. For the options
’3MOM’, >4MOM’ and ’5MOM’, PARP(171) is dummy, since there the momenta
are set in the P array. It is also dummy for the *USER’ option, where the choice
of variable energies is beyond the control of PYTHIA.

PARP(173) : event weight to be given by you when MSTP(173)=1.

PARP(174) : (D=1.) maximum event weight that will be encountered in PARP(173)
during the course of a run with MSTP(173)=1; to be used to optimize the
efficiency of the event generation. It is always allowed to use a larger bound
than the true one, but with a corresponding loss in efficiency.

PARP(181) - PARP(189) : (D = 0.1, 0.01, 0.01, 0.01, 0.1, 0.01, 0.01, 0.01, 0.3) Yukawa
couplings of leptons to HT*, assumed same for Hf * and H5*. Is a symmetric
3 x 3 array, where PARP (177+3*i+j) gives the coupling to a lepton pair with
generation indices ¢ and j. Thus the default matrix is dominated by the
diagonal elements and especially by the 77 one.

PARP(190) : (D=0.64) g1, = ¢/ sin Oy .

PARP(191) : (D=0.64) gg, assumed same as g

PARP(192) : (D=5 GeV) vy vacuum expectation value of the left-triplet. The corre-

sponding vy is assumed given by vg = v2Myy,./gr and is not stored explicitly.

9.4 Further Couplings

In this section we collect information on the two routines for running oy and ey, and on
other couplings of standard and non-standard particles found in the PYDAT1 and PYTCSM
common blocks. Although originally begun for applications within the traditional particle
sector, this section of PYDAT1 has rapidly expanded towards the non-standard aspects, and
is thus more of interest for applications to specific processes. It could therefore equally
well have been put somewhere else in this manual. Several other couplings indeed appear
in the PARP array in the PYPARS common block, see section 9.3, and the choice between
the two has largely been dictated by availability of space. The improved simulation
of the TechniColor Strawman Model, described in [Lan02, Lan02a], and the resulting
proliferation of model parameters, has led to the introduction of the new PYTCSM common

block.

ALEM = PYALEM(Q2)

Purpose: to calculate the running electromagnetic coupling constant ae,,. Expressions
used are described in ref. [Kle89]. See MSTU(101), PARU(101), PARU(103) and
PARU(104).

Q2 : the momentum transfer scale Q? at which to evaluate cep.

ALPS = PYALPS(Q2)
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Purpose: to calculate the running strong coupling constant ag, e.g. in matrix elements
and resonance decay widths. (The function is not used in parton showers,
however, where formulae rather are written in terms of the relevant A values.)
The first- and second-order expressions are given by eqs. (27) and (32). See
MSTU(111) - MSTU(118) and PARU(111) - PARU(118) for options.

Q2 : the momentum transfer scale Q% at which to evaluate o.

PM = PYMRUN(KF,Q2)

Purpose: to give running masses of d, u, s, ¢, b and t quarks according to eq. 90. For
all other particles, the PYMASS function is called by PYMRUN to give the normal
mass. Such running masses appear e.g. in couplings of fermions to Higgs and
technipion states.

KF : flavour code.
Q2 : the momentum transfer scale Q? at which to evaluate o.
Note: The nominal values, valid at a reference scale

2 = maX((PARP(37)mnominal)27 4A2)7

ref

are stored in PARF (91)-PARF (96).

COMMON/PYDAT1/MSTU(200) ,PARU(200) ,MSTJ (200) ,PARJ(200)

Purpose: to give access to a number of status codes and parameters which regulate the
performance of the program as a whole. Here only those related to couplings
are described; the main description is found in section 14.3.

MSTU(101) : (D=1) procedure for ce, evaluation in the PYALEM function.

=0 : Qe 18 taken fixed at the value PARU(101).

=1 : Qem is TUNning with the Q2 scale, taking into account corrections from
fermion loops (e, p, 7, d, u, s, ¢, b).

=2 : Qe is fixed, but with separate values at low and high Q?. For Q? be-

low (above) PARU(104) the value PARU(101) (PARU(103)) is used. The
former value is then intended for real photon emission, the latter for
electroweak physics, e.g. of the W/Z gauge bosons.

MSTU(111) : (I, D=1) order of ay evaluation in the PYALPS function. Is overwritten in
PYEEVT, PYONIA or PYINIT calls with the value desired for the process under
study.

=0 : g is fixed at the value PARU(111). As extra safety, A =PARU(117) is set
in PYALPS so that the first-order running oy agrees with the desired fixed
ag for the Q? value used.

=1 : first-order running ay is used.

=2 : second-order running ay is used.

MSTU(112) : (D=5) the nominal number of flavours assumed in the s expression, with
respect to which A is defined.

MSTU(113) : (D=3) minimum number of flavours that may be assumed in «; expression,
see MSTU(112).

MSTU(114) : (D=5) maximum number of flavours that may be assumed in «y expression,
see MSTU(112).

MSTU(115) : (D=0) treatment of cy singularity for @* — 0 in PYALPS calls. (Relevant
e.g. for QCD 2 — 2 matrix elements in the p; — 0 limit, but not for showers,
where PYALPS is not called.)

0 : allow it to diverge like 1/1In(Q?/A?).

1 soften the divergence to 1/1In(1 + Q?/A?).

210



=2: freeze Q? evolution below PARU(114), i.e. the effective argument is
max(Q? PARU(114)).
MSTU(118) : (I) number of flavours ny found and used in latest PYALPS call.

PARU(101) : (D=0.00729735=1/137.04) tem, the electromagnetic fine structure constant
at vanishing momentum transfer.

PARU(102) : (D=0.232) sin*fy, the weak mixing angle of the standard electroweak
model.

PARU(103) : (D=0.007764=1/128.8) typical e, in electroweak processes; used for
(?> >PARU(104) in the option MSTU(101)=2 of PYALEM. Although it can tech-
nically be used also at rather small Q?, this aem value is mainly intended for
high ()2, primarily Z° and W* physics.

PARU(104) : (D=1 GeV?) dividing line between ‘low’ and ‘high’ Q? values in the option
MSTU(101)=2 of PYALEM.

PARU(105) : (D=1.16639E-5 GeV~2) G, the Fermi constant of weak interactions.

PARU(108) : (I) the ciy value obtained in the latest call to the PYALEM function.

PARU(111) : (D=0.20) fix as value assumed in PYALPS when MSTU(111)=0 (and also in
parton showers when «y is assumed fix there).

PARU(112) : (I, D=0.25 GeV) A used in running o, expression in PYALPS. Like
MSTU(111), this value is overwritten by the calling physics routines, and is
therefore purely nominal.

PARU(113) : (D=1.) the flavour thresholds, for the effective number of flavours n; to
use in the oy expression, are assumed to sit at Q* =PARU(113) xmfl, where my
is the quark mass. May be overwritten from the calling physics routine.

PARU(114) : (D=4 GeV?) Q? value below which the oy value is assumed constant for
MSTU(115)=2.

PARU(115) : (D=10.) maximum « value that PYALPS will ever return; is used as a last
resort to avoid singularities.

PARU(117) : (I) A value (associated with MSTU(118) effective flavours) obtained in latest
PYALPS call.

PARU(118) : (I) ay value obtained in latest PYALPS call.

PARU(121) - PARU(130) : couplings of a new Z"; for fermion default values are given
by the Standard Model Z° values, assuming sin6y = 0.23. Since a genera-
tion dependence is now allowed for the Z" couplings to fermions, the vari-
ables PARU(121) - PARU(128) only refer to the first generation, with the
second generation in PARJ(180) - PARJ(187) and the third in PARJ(188)
- PARJ(195) following exactly the same pattern. Note that e.g. the Z"° width
contains squared couplings, and thus depends quadratically on the values be-
low.

PARU(121), PARU(122) : (D=-0.693,-1.) vector and axial couplings of down type
quarks to 7.

PARU(123), PARU(124) : (D=0.387,1.) vector and axial couplings of up type
quarks to 7.

PARU(125), 0PARU(126) : (D=-0.08,-1.) vector and axial couplings of leptons to
7"°.

PARU(127), PARU(128) : (D=1.,1.) vector and axial couplings of neutrinos to Z".

PARU(129) : (D=1.) the coupling Z"° — WHTW~ is taken to be PARU(129) X (the
Standard Model Z° — WTW~ coupling)x (my/mz)?. This gives a
7Z"° — WHW-~ partial width that increases proportionately to the Z"
mass.

PARU(130) : (D=0.) in the decay chain Z° — W+W~ — 4 fermions, the angular
distribution in the W decays is supposed to be a mixture, with fraction
1-PARU(130) corresponding to the same angular distribution between the
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four final fermions as in Z° — WTW~ (mixture of transverse and lon-
gitudinal W’s), and fraction PARU(130) corresponding to h® — WTW~—
the same way (longitudinal W’s).

PARU(131) - PARU(136) : couplings of a new W'*; for fermions default values are given
by the Standard Model W¥ values (i.e. V — A). Note that e.g. the W'*
width contains squared couplings, and thus depends quadratically on the values
below.

PARU(131), PARU(132) : (D=1.-1.) vector and axial couplings of a quark—
antiquark pair to W'*; is further multiplied by the ordinary CKM factors.

PARU(133), PARU(134) : (D=1.-1.) wvector and axial couplings of a lepton-
neutrino pair to W'*,

PARU(135) : (D=1.) the coupling W'* — Z'W= is taken to be PARU(135) x (the
Standard Model W* — Z°W= coupling) x (mw /mw~)?. This gives a
W'# — ZOWH partial width that increases proportionately to the W’
mass.

PARU(136) : (D=0.) in the decay chain W'* — Z°W=* — 4 fermions, the angular
distribution in the W /Z decays is supposed to be a mixture, with fraction
1-PARU(136) corresponding to the same angular distribution between
the four final fermions as in W* — Z'W# (mixture of transverse and
longitudinal W/Z’s), and fraction PARU(136) corresponding to H* —
Z°W= the same way (longitudinal W/Z’s).

PARU(141) : (D=5.) tan/ parameter of a two Higgs doublet scenario, i.e. the ratio
of vacuum expectation values. This affects mass relations and couplings in
the Higgs sector. If the Supersymmetry simulation is switched on, IMSS(1)
nonvanishing, PARU(141) will be overwritten by RMSS(5) at initialization, so
it is the latter variable that should be set.

PARU(142) : (D=1.) the Z° — H*H™ coupling is taken to be PARU(142) X (the MSSM
7Z° — HTH™ coupling).

PARU(143) : (D=1.) the Z° — H"H™ coupling is taken to be PARU(143) x (the MSSM
7Z° — HTH™ coupling).

PARU(145) : (D=1.) quadratically multiplicative factor in the Z"® — Z°h° partial width
in left-right-symmetric models, expected to be unity (see [Coc91]).
PARU(146) : (D=1.) sin(2a) parameter, enters quadratically as multiplicative factor in

the W% — W*h? partial width in left-right-symmetric models (see [Coc91]).

PARU(151) : (D=1.) multiplicative factor in the Lqg — qf squared Yukawa coupling,
and thereby in the Lq partial width and the q¢ — Lgq and other cross sections.
Specifically, A\?/(4m) =PARU(151) X ey, i.e. it corresponds to the k factor of
[Hew88].

PARU(161) - PARU(168) : (D=5%1.,3*%0.) multiplicative factors that can be used to
modify the default couplings of the h® particle in PyTHIA. Note that the fac-
tors enter quadratically in the partial widths. The default values correspond
to the couplings given in the minimal one-Higgs-doublet Standard Model, and
are therefore not realistic in a two-Higgs-doublet scenario. The default val-
ues should be changed appropriately by you. Also the last two default values
should be changed; for these the expressions of the minimal supersymmetric
Standard Model (MSSM) are given to show parameter normalization. Alter-
natively, the SUSY machinery can generate all the couplings for IMSS(1), see
MSTP(4).

PARU(161) : h° coupling to down type quarks.

PARU(162) : h° coupling to up type quarks.

PARU(163) : h° coupling to leptons.

PARU(164) : h° coupling to Z°.

PARU(165) : h° coupling to W+,
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PARU(168) : h° coupling to H* in vy — h° loops, in MSSM sin(8 — a) +
cos(2) sin(f + «) /(2 cos* by ).

PARU(171) - PARU(178) : (D=7*1.,0.) multiplicative factors that can be used to mod-
ify the default couplings of the H® particle in PYTHIA. Note that the factors
enter quadratically in partial widths. The default values for PARU(171) -
PARU(175) correspond to the couplings given to h® in the minimal one-Higgs-
doublet Standard Model, and are therefore not realistic in a two-Higgs-doublet
scenario. The default values should be changed appropriately by you. Also
the last two default values should be changed; for these the expressions of the
minimal supersymmetric Standard Model (MSSM) are given to show param-
eter normalization. Alternatively, the SUSY machinery can generate all the
Couphngs for IMSS(1), see MSTP(4).

PARU(171) : HO coupling to down type quarks.

PARU(172) : HO coupling to up type quarks.

PARU(173) : HO coupling to leptons.

PARU(174) : H° coupling to Z°.

PARU(175) : H° coupling to W=.

PARU(176) : HY coupling to h’h®, in MSSM cos(2a) cos(S+a)—2 sin(2a) sin(S+a).

PARU(177) : HY coupling to A°A°, in MSSM cos(QB) cos(f 4 ).

PARU(178) : H° coupling to H* in vy — H° loops, in MSSM cos(3 — a) —
cos(QB) cos(B + a) /(2 cos*Oy).

PARU(181) - PARU(190) : (D=3*1.,2%0.,2*1.,3*0.) multiplicative factors that can be
used to modify the default couplings of the A® particle in PyTHIA. Note
that the factors enter quadratically in partial widths. The default values for
PARU(181) - PARU(183) correspond to the couplings given to h° in the min-
imal one-Higgs-doublet Standard Model, and are therefore not realistic in a
two-Higgs-doublet scenario. The default values should be changed appropri-
ately by you. PARU(184) and PARU(185) should be vanishing at the tree level,
in the absence of CP violating phases in the Higgs sector, and are so set; nor-
malization of these couplings agrees with what is used for h® and H°. Also
the other default values should be changed; for these the expressions of the
Minimal Supersymmetric Standard Model (MSSM) are given to show param-
eter normalization. Alternatively, the SUSY machinery can generate all the
Couphngs for IMSS(1), see MSTP(4).

PARU(181) : AP coupling to down type quarks.

PARU(182) : AP coupling to up type quarks.

PARU(183) : A coupling to leptons.

PARU(184) : A° coupling to Z°.

PARU(185) : A coupling to W*.

PARU(186) : A" coupling to Z°h° (or Z* to A°hY), in MSSM cos(8 — «).
PARU(187) : AP coupling to Z°H (or Z* to A’H?), in MSSM sin(3 — «).
PARU(188) : As PARU(186), but coupling to Z° rather than Z°.
PARU(189) : As PARU(187), but coupling to Z"° rather than Z°.
PARU(190) : A coupling to H* in vy — A° loops, 0 in MSSM.

PARU(191) - PARU(195) : (D=4%0.,1.) multiplicative factors that can be used to mod-
ify the couplings of the Hi particle in PyTHIA. Currently only PARU(195) is
in use. See above for related comments.

PARU(195) : H¥ coupling to W*h® (or W** to H*h?), in MSSM cos(3 — «).

PARU(197): (D=0.) HY coupling to W*HT within a two-Higgs-doublet model.

PARU(198): (D=0.) A° coupling to W*HT within a two-Higgs-doublet model.

PARJ(180) - PARJ(187) : couplings of the second generation fermions to the Z”, fol-
lowing the same pattern and with the same default values as the first one in
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PARU(121) - PARU(128).

PARJ(188) - PARJ(195) : couplings of the third generation fermions to the Z’°, fol-

lowing the same pattern and with the same default values as the first one in
PARU(121) - PARU(128).

COMMON/PYTCSM/ITCM(0:99) ,RTCM(0:99)

Purpose: to give access to a number of switches and parameters which regulate the

ITCM(1)
ITCM(2)

ITCM(5)

=0 :
=1 :

=2 :
=3 :

RTCM(1)
RTCM(2)

RTCM(3)
RTCM(4)
RTCM(5)
RTCM(6)
RTCM(7)
RTCM(8)
RTCM(9)
RTCM(10)
RTCM(11)
RTCM(12)
RTCM(13)

RTCM(21)

1 :

=4 .
5

simulation of the TechniColor Strawman Model [Lan02, Lan02a], plus a few
further parameters related to the simulation of compositeness, mainly in earlier
incarnations of TechniColor.

: (D=4) Nr¢, number of technicolors; fixes the relative values of gep, and gege.
: (D=0) Topcolor model.
=0 :

Standard Topcolor. Third generation quark couplings to the coloron
are proportional to cot 3, see RTCM(21) below; first two generations are
proportional to — tan 6.

Flavor Universal Topcolor. All quarks couple with strength proportional
to cot Os.

: (D=0) presence of anomalous couplings in standard model processes, see sub-

section 8.6.5 for further details.
: absent.

left—left isoscalar model, with only u and d quarks composite (at the
probed scale).

left—left isoscalar model, with all quarks composite.
helicity-non-conserving model, with only u and d quarks composite (at
the probed scale).

helicity-non-conserving model, with all quarks composite.

coloured technihadrons, affecting the standard QCD 2 — 2 cross sections
by the exchange of Coloron or Colored Technirho, see subsection 8.6.7.

(D=82 GeV) Fr, the Technicolor decay constant.

: (D=4/3) Qu, charge of up-type technifermion; the down-type technifermion

has a charge Qp = Qu — 1.

: (D=1/3) sinx, where x is the mixing angle between isotriplet technipion

interaction and mass eigenstates.

: (D=1//6) siny’, where Y’ is the mixing angle between the isosinglet 7'},

interaction and mass eigenstates.
(D=1) Clebsch for technipi decays to charm. Appears squared in decay rates.
(D=1) Clebsch for technipi decays to bottom. Appears squared in decay rates.

: (D=0.0182) Clebsch for technipi decays to top, estimated to be my,/my;. Ap-

pears squared in decay rates.

: (D=1) Clebsch for technipi decays to 7. Appears squared in decay rates.
: (D=0) squared Clebsch for isotriplet technipi decays to gluons.

: (D=4/3) squared Clebsch for isosinglet technipi decays to gluons.

: (D=0.05) technirho-techniomega mixing parameters. Allows for isospin vi-
olating decays of the techniomega.

: (D=200 GeV) vector technimeson decay parameter. Affects the decay rates
of vector technimesons into technipi plus transverse gauge boson.

: (D=200 GeV) axial mass parameter for technivector decays to transverse
gauge bosons and technipions.

: (D=+/0.08) tangent of Topcolor mixing angle, in the scenario with coloured
technihadrons described in subsection 8.6.7 and switched on with ITCM(5)=5.
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RTCM(22)
RTCM(23)
RTCM(24)
RTCM(25)
RTCM(26)
RTCM(27)

RTCM(28)
RTCM(29)

RTCM(30)
RTCM(31)

RTCM(32)
RTCM(33)

RTCM(41)

RTCM(42)

RTCM(43)

RTCM(46)

For ITCM(2)=0, the coupling of the Vg to light quarks is suppressed by
RTCM(21)? whereas the coupling to heavy (b and t) quarks is enhanced by
1/RTCM(21)2. For ITCM(21)=1, the coupling to quarks is universal, and given
by 1/RTCM(21)2.

: (D=1/+/2) sine of isosinglet technipi mixing with Topcolor currents.

: (D=0) squared Clebsch for color-octet technipi decays to charm.

: (D=0) squared Clebsch for color-octet technipi decays to bottom.

: (D=0) squared Clebsch for color-octet technipi decays to top.

: (D=5/3) squared Clebsch for color-octet technipi decays to gluons.

: (D=250 GeV) color-octet technirho decay parameter for decays to technipi
plus gluon.

: (D=250 GeV) hard mixing parameter between color-octet technirhos.

: (D=1/+/2) magnitude of (1, 1) element of the U(2) matrices that diagonalize
U-type technifermion condensates.

: (D=0 Radians) phase for the element described above, RTCM(29).

: (D=1/+/2) Magnitude of (1, 1) element of the U(2) matrices that diagonalize
D-type technifermion condensates.

: (D=0 Radians) phase for the element described above, RTCM(31).

. (D=1) if Ty, () > RTCM(33)/3, then T'y,(3) is redefined to be RTCM(33)+/3.
It thus prevents the coloron from becoming wider than its mass.

: compositeness scale A, used in processes involving excited fermions, and for
standard model processes when ITCM(5) is between 1 and 4.

: (D=1.) sign of the interference term between the standard cross section and
the compositeness term (7 parameter); should be +1; used for standard model
processes when ITCM(5) is between 1 and 4.

- RTCM(45) : (D=3*1.) strength of the SU(2), U(1) and SU(3) couplings,
respectively, in an excited fermion scenario; cf. f, f' and f; of [Bau90].

: (D=0.) anomalous magnetic moment of the W* in process 20; n = xk — 1,
where 7 =0 (k = 1) is the Standard Model value.

9.5 Supersymmetry Common Blocks and Routines

The parameters available to the SUSY user are stored in the common block PYMSSM. In
general, options are set by the IMSS array, while real valued parameters are set by RMSS.
The entries IMSS(0) and RMSS(0) are not used, but are available for compatibility with
the C programming language. Note also that most options are only used by PYTHIA’s
internal SUSY machinery and are ineffective when external spectrum calculations are
used, see section 8.7.5.

COMMON/PYMSSM/IMSS(0:99) ,RMSS(0:99)

Purpose: to give access to parameters that allow the simulation of the MSSM.

IMSS(1)
=0

=1 :

=2 :

: (D=0) level of MSSM simulation.

: No MSSM simulation.

A general MSSM simulation. The parameters of the model are set by
the array RMSS.

An approximate SUGRA simulation using the analytic formulae of
[Dre95] to reduce the number of free parameters. In this case, only
five input parameters are used. RMSS(1) is the common gaugino mass
my /2, RMSS(8) is the common scalar mass mg, RMSS(4) fixes the sign of
the higgsino mass pu, RMSS(16) is the common trilinear coupling A, and
RMSS(5) is tan 3 = vy /vy.
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IMSS(2)

IMSS(3)

IMSS(4)

IMSS(5)

11 :

12 :

Read spectrum from a SUSY Les Houches Accord conformant file. The
Logical Unit Number on which the file is opened should be put in
IMSS(21). If a decay table should also be read in, the corresponding
Unit Number (normally the same as the spectrum file) should be put in
IMSS(22). Cross sections are still calculated by PYTHIA, as are decays
for those sparticles and higgs bosons for which a decay table is not found
on the file.

Invoke a runtime interface to ISAsuSy [Bae93] for determining SUSY
mass spectrum and mixing parameters. This provides a more precise
solution of the renormalization group equations than is offered by the
option = 2 above. The interface automatically asks the SUGRA routine
(part of ISASUSY) to solve the RGE’s for the weak scale mass spectrum
and mixing parameters. The mSUGRA input parameters should be given
in RMSS as usual, i.e.: RMSS(1) = my /o, RMSS(4) = sign(u), RMSS(5) =
tan 3, RMSS(8) = mg, and RMSS(16)= A. As before, we are using the
conventions of [Hab85, Gun86a] everywhere. Cross sections and decay
widths are still calculated by PYTHIA, using the output provided by
Isasusy. Note that since PYTHIA cannot always be expected to be
linked with the ISAJET library, a new dummy routine and a new dummy
function have been added. These are SUGRA and VISAJE, located towards
the very bottom of the PYTHIA source code. These routines must be
removed and PYTHIA recompiled before a proper linking with ISAJET can
be achieved. Furthermore, the common block sizes and variable positions
accessed in the SUGRA routine have to match those of thelSAJET version
used, see subsection 8.7.5.

: (D=0) treatment of U(1), SU(2), and SU(3) gaugino mass parame-

ters.

2 :

The gaugino parameters M, My and M3 are set by RMSS(1), RMSS(2),
and RMSS(3), i.e. there is no forced relation between them.

The gaugino parameters are fixed by the relation (3/5) M;/a; =
My/as = Ms/az = X and the parameter RMSS(1). If IMSS(1)=2, then
RMSS (1) is treated as the common gaugino mass m;/, and RMSS(20) is
the GUT scale coupling constant agyr, so that X =m; /agur-

M is set by RMSS(1), M, by RMSS(2) and M3 = Msas/as. In such a
scenario, the U(1) gaugino mass behaves anomalously.

: (D=0) treatment of the gluino mass parameter.

: (D=

0 :

1 :

2 :

The gluino mass parameter Mj is used to calculate the gluino pole mass
with the formulae of [Kol96]. The effects of squark loops can significantly
shift the mass.

Mj is the gluino pole mass. The effects of squark loops are assumed to
have been included in this value.

1) treatment of the Higgs sector.

The Higgs sector is determined by the approximate formulae of [Car95]
and the pseudoscalar mass M set by RMSS(19).

The Higgs sector is determined by the exact formulae of [Car95] and the
pseudoscalar mass My set by RMSS(19). The pole mass for M, is not
the same as the input parameter.

The Higgs sector is fixed by the mixing angle o set by RMSS(18) and the
mass values PMAS(I,1), ngere I=25,35,36, and 37.

: (D=0) allows you to set the t, b and ¥ masses and mixing by hand.
0 :
1 :

no, the program calculates itself.
yes, calculate from given input. The parameters RMSS(26) - RMSS(28)
specify the mixing angle (in radians) for the sbottom, stop, and stau.
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IMSS(7)

IMSS(8)

=1 :

IMSS(9)

=1 :

IMSS(10)

=0 :

=1 :

IMSS(11)

=0 :
=1 :

IMSS(21)

IMSS(22)

=0 :

>0 :

IMSS(23)

=0 :
>0 :

IMSS(24)

=0 :
>0 :

0 :

1 :

0 :

The parameters RMSS(10) - RMSS(14) specify the two stop masses, the
one sbottom mass (the other being fixed by the other parameters) and
the two stau masses. Note that the masses RMSS(10), RMSS(11) and
RMSS (13) correspond to the left-left entries of the diagonalized matrices,
while RMSS (12) and RMSS(14) correspond to the right-right entries. Note
that these entries need not be ordered in mass.

: (D=0) treatment of the scalar masses in an extension of SUGRA models. The

presence of additional U(1) symmetries at high energy scales can modify the
boundary conditions for the scalar masses at the unification scale.
No additional D—terms are included. In SUGRA models, all scalars have
the mass mg at the unification scale.
RMSS(23) - RMSS(25) are the values of Dy, Dy and Dg at the unifi-
cation scale in the model of [Mar94]. The boundary conditions for the
scalar masses are shifted based on their quantum numbers under the
additional U(1) symmetries.

: (D=0) treatment of the 7 mass eigenstates.
=0 :

The 7 mass eigenstates are calculated using the parameters
RMSS(13,14,17).

The 7 mass eigenstates are identical to the interaction eigenstates, so
they are treated identically to € and i .

: (D=0) treatment of the right handed squark mass eigenstates for the first two

generations. R
The qr masses are fixed by RMSS(9). dg and i are identical except for
Electroweak D—term contributions.
The masses of dg and tig are fixed by RMSS (9) and RMSS(22) respectively.
: (D=0) allowed decays for ya.
The second lightest neutralino s decays with a branching ratio calcu-
lated from the MSSM parameters.
X2 is forced to decay only to 17, regardless of the actual branching ratio.
This can be used for detailed studies of this particular final state.
: (D=0) choice of the lightest superpartner (LSP).
X1 is the LSP.
X1 is the next to lightest superparter (NLSP) and the gravitino is the
LSP. The y; decay length is calculated from the gravitino mass set by
RMSS(21) and the yx; mass and mixing.
: (D=0) Logical Unit Number for SUSY Les Houches Accord spectrum read-
in. Only used if IMSS(1)=11.
: (D=0) Read-in of SUSY Les Houches Accord decay table.
No decays are read in. The internal PYTHIA machinery is used to calcu-
late decay rates.
Read decays from LHAS3 file on unit number IMSS(22). During initializa-
tion, decay tables in the file will replace the values calculated by PYTHIA.
Particles for which the file does not contain a decay table will thus still
have their decays calculated by PYTHIA. In normal usage one would ex-
pect IMSS(22) to be equal to IMSS(21), to ensure that the spectrum and
decays are consistent with each other, but this is not a strict requirement.
: (D=0) writing of MSSM spectrum data.
Don’t write out spectrum.
Write out spectrum in LHA3 format (calculated by PYTHIA or otherwise)
to file on unit number IMSS(23).
: (D=0) writing of MSSM particle decay table.
Don’t write out decay table.
Write out decay table in LHA3 format to file on unit number IMSS(24).
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IMSS(51)

=0 :
=1 :
=2 :

=3 :

IMSS(52)

=0 :
1 :
2 :

=3 .

IMSS(53)

=0 :
=1 :
=2 :

=3 :

RMSS (1)
RMSS(2)
RMSS (3)
RMSS (4)

RMSS (5)
RMSS (6)

RMSS(7)
RMSS(8)

RMSS(9)
RMSS(10)

RMSS(11)

RMSS(12)

RMSS(13)
RMSS(14)
RMSS(15)

Not implemented in the code yet. In normal usage one would expect
IMSS(24) to be equal to IMSS(23), to ensure that the spectrum and
decays are consistent with each other, but this is not a strict requirement.

: (D=0) Lepton number violation on/off (LLE type couplings).
All LLE couplings off. LLE decay channels off.
All LLE couplings set to common value given by 1075861
LLE couplings set to generation-hierarchical ‘natural’ values with com-
mon normalization RMSS(51) (see section 8.7.7).
All LLE couplings set to zero, but LLE decay channels not switched
off. Non-zero couplings should be entered individually into the array
RVLAM(I,J,K). Because of the antisymmetry in I and J, only entries
with I<J need be entered.

: (D=0) Lepton number violation on/off (LQD type couplings).
All LQD couplings off. LQD decay channels off.
All LQD couplings set to common value given by 1
LQD couplings set to generation-hierarchical ‘natural’ values with com-
mon normalization RMSS(52) (see section 8.7.7).
All LQD couplings set to zero, but LQD decay channels not switched
off. Non-zero couplings should be entered individually into the array
RVLAMP(I,J,K).

: (D=0) Baryon number violation on/off
All UDD couplings off. UDD decay channels off.
All UDD couplings set to common value given by 1
UDD couplings set to generation-hierarchical ‘natural’ values with com-
mon normalization RMSS(53) (see section 8.7.7).
All UDD couplings set to zero, but UDD decay channels not switched
off. Non-zero couplings should be entered individually into the array
RVLAMB(I, J,K). Because of the antisymmetry in J and K, only entries
with J<K need be entered.

O-RMSS (52)

O—RMSS(53)

: (D=80. GeV) If IMSS(1)=1 M;, then U(1) gaugino mass. If IMSS(1)=2,

then the common gaugino mass m; ;.

: (D=160. GeV) M;, the SU(2) gaugino mass.
: (D=500. GeV) M3, the SU(3) (gluino) mass parameter.
: (D=800. GeV) pu, the higgsino mass parameter. If IMSS(1)=2, only the sign

of p is used.

: (D=2.) tan 3, the ratio of Higgs expectation values.

: (D=250. GeV) Left slepton mass M; . The sneutrino mass is fixed by a sum
rule.

: (D=200. GeV) Right slepton mass M.

: (D=800. GeV) Left squark mass Mg,. If IMSS(1)=2, the common scalar
mass my.

: (D=700. GeV) Right squark mass Mg,. Mz when IMSS(9)=1.
: (D=800. GeV) Left squark mass for the third generation M;,. When

IMSS(5)=1, it is instead the t, mass, and My, is a derived quantity.

: (D=700. GeV) Right sbottom mass My . When IMSS(5)=1, it is instead
the b; mass.

: (D=500. GeV) Right stop mass M, If negative, then it is assumed that
MEQR < 0. When IMSS(5)=1, it is instead the t; mass.

: (D=250. GeV) Left stau mass M5z, .

: (D=200. GeV) Right stau mass M.

: (D=800. GeV) Bottom trilinear coupling A,. When IMSS(5)=1, it is a
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derived quantity.

RMSS(16) : (D=400. GeV) Top trilinear coupling A;. If IMSS(1)=2, the common trilin-
ear coupling A. When IMSS(5)=1, it is a derived quantity.

RMSS(17) : (D=0.) Tau trilinear coupling A,. When IMSS(5)=1, it is a derived quantity.

RMSS(18) : (D=0.1) Higgs mixing angle a. This is only used when all of the Higgs
parameters are set by you, i.e IMSS(4)=2.

RMSS(19) : (D=850. GeV) Pseudoscalar Higgs mass parameter Mj.

RMSS(20) : (D=0.041) GUT scale coupling constant agur-

RMSS(21) : (D=1.0 eV) The gravitino mass. Note nonconventional choice of units for
this particular mass.

RMSS(22) : (D=800. GeV) iz mass when IMSS(9)=1.

RMSS(23) : (D=10" GeV?) Dx contribution to scalar masses when IMSS(7)=1.
RMSS(24) : (D=10" GeV?) Dy contribution to scalar masses when IMSS(7)=1.
RMSS(25) : (D=10" GeV?) Dg contribution to scalar masses when IMSS(7)=1.
RMSS(26) : (D=0.0 radians) when IMSS(5)=1 it is the sbottom mixing angle.
RMSS(27) : (D=0.0 radians) when IMSS(5)=1 it is the stop mixing angle.
RMSS(28) : (D=0.0 radians) when IMSS(5)=1 it is the stau mixing angle.

RMSS(29) : (D=2.4 x 10'® GeV) The Planck mass, used for calculating decays to light
gravitinos.

RMSS(30) - RMSS(33) : (D=0.0,0.0,0.0,0.0) complex phases for the mass parameters
in RMSS(1) - RMSS(4), where the latter represent the moduli of the mass
parameters for the case of nonvanishing phases.

RMSS(40), RMSS(41) : used for temporary storage of the corrections Amg and Amy,,
respectively, in the calculation of Higgs properties.

RMSS(51) : (D=0.0) when IMSS(51)=1 it is the negative logarithm of the common value
for all lepton number violating A couplings (LLE). When IMSS(51)=2 it is the
constant of proportionality for generation-hierarchical A couplings. See section
8.7.7.

RMSS(52) : (D=0.0) when IMSS(52)=1 it is the negative logarithm of the common value
for all lepton number violating A" couplings (LQD). When IMSS(52)=2 it is
the constant of proportionality for generation-hierarchical A’ couplings. See
section 8.7.7.

RMSS(53) : (D=0.0) when IMSS(53)=1 it is the negative logarithm of the common value
for all baryon number violating \” couplings (UDD). When IMSS(53)=2 it is
the constant of proportionality for generation-hierarchical \” couplings. See
section 8.7.7.

COMMON/PYSSMT/ZMIX (4,4) ,UMIX(2,2),VMIX(2,2),SMZ(4) ,SMW(2),
&SFMIX(16,4) ,ZMIXI(4,4),UMIXI(2,2),VMIXI(2,2)

Purpose: to provide information on the neutralino, chargino, and sfermion mixing pa-
rameters. The variables should not be changed by you.

ZMIX(4,4) : the real part of the neutralino mixing matrix in the Bino—neutral Wino-Up
higgsino-Down higgsino basis.

UMIX(2,2) : the real part of the chargino mixing matrix in the charged Wino—charged
higgsino basis.

VMIX(2,2) : the real part of the charged conjugate chargino mixing matrix in the wino—
charged higgsino basis.

SMZ(4) : the signed masses of the neutralinos.

SMW(2) : the signed masses of the charginos.

SFMIX(16,4) : the sfermion mixing matrices T in the L-R basis, identified by the corre-
sponding fermion, i.e. SFMIX(6,1I) is the stop mixing matrix. The four entries
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for each sfermion are Ty, T1a, To1, and Tas.

ZMIXI(4,4) : the imaginary part of the neutralino mixing matrix in the Bino—neutral
Wino-Up higgsino-Down higgsino basis.

UMIXI(2,2) : the imaginary part of the chargino mixing matrix in the charged Wino—
charged higgsino basis.

VMIXI(2,2) : the imaginary part of the charged conjugate chargino mixing matrix in
the wino—charged higgsino basis.

COMMON/PYMSRV/RVLAM(3,3,3), RVLAMP(3,3,3), RVLAMB(3,3,3)

Purpose: to provide information on lepton and baryon number violating couplings.
RVLAM(3,3,3) : the lepton number violating A;;; couplings. See IMSS(51), RMSS(51).
RVLAMP(3,3,3) : the lepton number violating \};; couplings. See IMSS(52), RMSS(52).

RVLAMB(3,3,3) : the baryon number violating Aj};, couplings. Currently not used.

The following subroutines and functions need not be accessed by the user, but are
described for completeness.

SUBROUTINE PYAPPS : uses approximate analytic formulae to determine the full set of
MSSM parameters from SUGRA inputs.

SUBROUTINE PYGLUI : calculates gluino decay modes.

SUBROUTINE PYGQQB : calculates three body decays of gluinos into neutralinos or
charginos and third generation fermions. These routines are valid for large
values of tan 3.

SUBROUTINE PYCJDC : calculates the chargino decay modes.

SUBROUTINE PYHEXT : calculates the non—Standard Model decay modes of the Higgs
bosons.

SUBROUTINE PYHGGM : determines the Higgs boson mass spectrum using several inputs.

SUBROUTINE PYINOM : finds the mass eigenstates and mixing matrices for the charginos
and neutralinos.

SUBROUTINE PYMSIN : initializes the MSSM simulation.

SUBROUTINE PYLHA3 : to read in or write out SUSY Les Houches Accord spectra and
decay tables. Can also be used stand-alone, before the call to PYINIT, to read
in SUSY Les Houches Accord decay tables for specific particles. See section
14.4 for how to do this.

SUBROUTINE PYNJDC : calculates neutralino decay modes.

SUBROUTINE PYPOLE : computes the Higgs boson masses using a renormalization group
improved leading—log approximation and two-loop leading—log corrections.

SUBROUTINE PYSFDC : calculates sfermion decay modes.

SUBROUTINE PYSUBH : computes the Higgs boson masses using only renormalization
group improved formulae.

SUBROUTINE PYTBDY : samples the phase space for three body decays of neutralinos,
charginos, and the gluino.

SUBROUTINE PYTHRG : computes the masses and mixing matrices of the third generation
sfermions.

SUBROUTINE PYRVSF : R-violating sfermion decay widths.

SUBROUTINE PYRVNE : R-violating neutralino decay widths.

SUBROUTINE PYRVCH : R-violating chargino decay widths.

SUBROUTINE PYRVGW : calculates R-violating 3-body widths using PYRVI1, PYRVI2,
PYRVI3, PYRVG1, PYRVG2, PYRVG3, PYRVG4, PYRVR, and PYRVS.

FUNCTION PYRVSB : calculates R—violating 2-body widths.

SUBROUTINE SUGRA : dummy routine, to avoid linking problems when ISAJET is not
linked; see IMSS(1) = 12.

FUNCTION VISAJE : dummy routine, to avoid linking problems when ISAJET is not
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linked; see IMSS(1) = 12.

9.6 General Event Information

When an event is generated with PYEVNT, some information on it is stored in the MSTI
and PARI arrays of the PYPARS common block (often copied directly from the internal
MINT and VINT variables). Further information is stored in the complete event record; see
section 5.2.

Part of the information is only relevant for some subprocesses; by default everything
irrelevant is set to 0. Kindly note that, like the CKIN constraints described in section 9.2,
kinematical variables normally (i.e. where it is not explicitly stated otherwise) refer to the
naive hard scattering, before initial- and final-state radiation effects have been included.

COMMON/PYPARS/MSTP (200) , PARP (200) ,MSTI (200) ,PARI(200)

Purpose: to provide information on latest event generated or, in a few cases, on statistics
accumulated during the run.

MSTI(1) : specifies the general type of subprocess that has occurred, according to the
ISUB code given in section 8.1.

MSTI(2) : whenever MSTI(1) (together with MSTI(15) and MSTI(16)) are not enough
to specify the type of process uniquely, MSTI(2) provides an ordering of the
different possibilities. This is particularly relevant for the different colour-flow
topologies possible in QCD 2 — 2 processes. With ¢ =MSTI(15), j =MSTI(16)
and k£ =MSTI(2), the QCD possibilities are, in the classification scheme of
[Ben84] (cf. section 8.2.1):

ISUB =11, i = j, ;4 — 4i;
k =1 : colour configuration A.
k = 2 : colour configuration B.
ISUB = 11, @ # j, qiq; — 4:iqj;
k =1 : only possibility.
ISUB = 12, q,q; — q@;
k =1 : only possibility.
ISUB = 13, q,q; — gg;
k =1 : colour configuration A.
k = 2 : colour configuration B.
ISUB = 28, q;g — qg;
k =1 : colour configuration A.
k = 2 : colour configuration B.
ISUB = 53, gg — qiq;;
k =1 : colour configuration A.
k = 2 : colour configuration B.
ISUB = 68, gg — gg;
k =1 : colour configuration A.
k = 2 : colour configuration B.
k = 3 : colour configuration C'.
ISUB = 83, fq — {'Q (by t-channel W exchange; does not distinguish colour flows
but result of user selection);
k =1 : heavy flavour Q is produced on side 1.
k = 2 : heavy flavour Q) is produced on side 2.

MSTI(3) : the number of partons produced in the hard interactions, i.e. the number n
of the 2 — n matrix elements used; it is sometimes 3 or 4 when a basic 2 — 1
or 2 — 2 process has been folded with two 1 — 2 initial branchings (like
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MSTI(4)

MSTI(5)

MSTI(6)
MSTI(7),

MSTI(9)

=0 :

4iq; — qeqh?).

: number of documentation lines at the beginning of the common block PYJETS

that are given with K(I,1)=21; 0 for MSTP (125)=0.

: number of events generated to date in current run. In runs with the variable-

energy option, MSTP(171)=1 and MSTP(172)=2, only those events that survive
(i.e. that do not have MSTI(61)=1) are counted in this number. That is,
MSTI(5) may be less than the total number of PYEVNT calls.

: current frame of event, cf. MSTP(124).

MSTI(8) : line number for documentation of outgoing partons/particles from
hard scattering for 2 — 2 or 2 — 1 — 2 processes (else = 0).

: event class used in current event for yp or 4y events. The code depends on

which process is being studied.
for other processes than the ones listed above.

For vp or v*p events, generated with the MSTP(14)=10 or MSTP(14)=30 options:

=1 :
=2 :
=3 .
=4 .

VMD.

direct.

anomalous.

DIS (only for v*p, i.e. MSTP(14)=30).

For real vy events, i.e. MSTP(14)=10:

=1 :

=6 :

2

3
=4 :

5

VMD xVMD.

VMD xdirect.

VMD x anomalous .
direct x direct.

direct x anomalous.
anomalous x anomalous.

For virtual y*v* events, i.e. MSTP(14)=30, where the two incoming photons are not

Il
OO0 NOOPd WN -

= 13 :

MSTI(10)
MSTI(11)
MSTI(12)

MSTI(13),
MSTI(15),

MSTI(17),

MSTI(21)

equivalent and the order therefore matters:
direct xdirect.
direct x VMD.
direct xanomalous.
VMD xdirect.
VMDxVMD.
VMD xanomalous.
anomalous x direct.
anomalousx VMD.
anomalous X anomalous.
DISxVMD.
DIS xanomalous.
VMD xDIS.
anomalous x DIS.
. is 1 if cross section maximum was violated in current event, and 0 if not.
: KF flavour code for beam (side 1) particle.
: KF flavour code for target (side 2) particle.
MSTI(14) : KF flavour codes for side 1 and side 2 initial-state shower initia-
tors.
MSTI(16) : KF flavour codes for side 1 and side 2 incoming partons to the
hard interaction.
MSTI(18) : flag to signal if particle on side 1 or side 2 has been scattered
diffractively; 0 if no, 1 if yes.
- MSTI(24) : KF flavour codes for outgoing partons from the hard interaction.
The number of positions actually used is process-dependent, see MSTI (3); trail-
ing positions not used are set = 0. For events with many outgoing partons,
e.g. in external processes, also MSTI(25) and MSTI(26) could be used.
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MSTI(25),

MSTI(31)
MSTI(32)
MSTI(41)

MSTI (42)

MSTI(51)

MSTI(52)

MSTI(53)

MSTI(61)

=0 :

=1

MSTI(71),

PARI(1)

PARI(2)

PARI(7)

PARI(9)

MSTI(26) : KF flavour codes of the products in the decay of a single s-channel
resonance formed in the hard interaction. Are thus only used when MSTI (3)=1
and the resonance is allowed to decay.

: number of hard or semi-hard scatterings that occurred in the current event
in the multiple-interaction scenario; is = 0 for a low-p, event.
: information on whether a reconnection occurred in the current event; is 0
normally but 1 in case of reconnection.
: the number of pile-up events generated in the latest PYEVNT call (including
the first, ‘hard’ event).
- MSTI(50) : ISUB codes for the events 2-10 generated in the pile-up-events
scenario. The first event ISUB code is stored in MSTI(1). If MSTI(41) is
less than 10, only as many positions are filled as there are pile-up events. If
MSTI(41) is above 10, some ISUB codes will not appear anywhere.
: normally 0 but set to 1 if a UPEVNT call did not return an event, such that
PYEVNT could not generate an event. For further details, see section 9.9.
: counter for the number of times the current event configuration failed in the
generation machinery. For accepted events this is always 0, but the counter
can be used inside UPEVNT to check on anomalous occurrences. For further
details, see section 9.9.
: normally 0, but 1 if no processes with non-vanishing cross sections were
found in a PYINIT call, for the case that MSTP(127)=1.
: status flag set when events are generated. It is only of interest for runs with
variable energies, MSTP(171)=1, with the option MSTP (172)=2.
an event has been generated.
no event was generated, either because the c.m. energy was too low or
because the Monte Carlo phase space point selection machinery rejected
the trial point. A new energy is to be picked by you.

MSTI(72) : KF code for incoming lepton beam or target particles, when a
flux of virtual photons are generated internally for ’gamma/lepton’ beams,
while MSTI(11) and MSTI(12) is then the photon code.

: total integrated cross section for the processes under study, in mb. This

number is obtained as a by-product of the selection of hard-process kinematics,
and is thus known with better accuracy when more events have been generated.
The value stored here is based on all events until the latest one generated.

: for unweighted events, MSTP(142)=0 or =2, it is the ratio PARI (1) /MSTI(5),

i.e. the ratio of total integrated cross section and number of events generated.
Histograms should then be filled with unit event weight and, at the end of the
run, multiplied by PARI(2) and divided by the bin width to convert results
to mb/(dimension of the horizontal axis). For weighted events, MSTP (142)=1,
MSTI(5) is replaced by the sum of PARI(10) values. Histograms should then
be filled with event weight PARI (10) and, as before, be multiplied by PARI(2)
and divided by the bin width at the end of the run. In runs with the variable-
energy option, MSTP(171)=1 and MSTP(172)=2, only those events that survive
(i.e. that do not have MSTI(61)=1) are counted.

: an event weight, normally 1 and thus uninteresting, but for external processes

with IDWTUP=-1, -2 or -3 it can be —1 for events with negative cross section,
with IDWTUP=4 it can be an arbitrary non-negative weight of dimension mb,
and with IDWTUP=-4 it can be an arbitrary weight of dimension mb. (The
difference being that in most cases a rejection step is involved to bring the
accepted events to a common weight normalization, up to a sign, while no
rejection need be involved in the last two cases.)

: is weight WTXS returned from PYEVWT call when MSTP(142)> 1, otherwise is
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PARI(10)
PARI(11)
PARI(12)

PARI (13)
PARI (14)
PARI(15)
PARI(16)
PARI(17)

PARI(18)
PARI(19)
PARI(20)
PARI(21)
PARI(22)
PARI(23)
PARI (24)

PARI(25)

PARI(26)

PARI(31),

PARI(33),

PARI(35)
PARI(36)
PARI (37)

PARI(38)

PARI(39),

PARI(41)

PARI(42)

PARI (43),

PARI(45),
PARI (47),
PARI (49),

PARI(51),

1

: is compensating weight 1./WTXS that should be associated to events when
MSTP(142)=1, else is 1.

i Eem, i.e. total c.m. energy (except when using the ’gamma/lepton’ machin-
ery, see PARI(101).

: s, i.e. squared total c.m. energy (except when using the ’gamma/lepton’
machinery, see PARI (102).

: m = +/§, i.e. mass of the hard-scattering subsystem.

: § of the hard subprocess (2 — 2 or 2 — 1).

. t of the hard subprocess (2 — 2 or 2 — 1 — 2).

: 4 of the hard subprocess (2 — 2 or 2 — 1 — 2).

: py of the hard subprocess (2 — 2 or 2 — 1 — 2), evaluated in the rest frame
of the hard interaction.

: P2 of the hard subprocess; see PARI (17).

m/, the mass of the complete three- or four-body final state in 2 — 3 or
2 — 4 processes (while 7, given in PARI(13), here corresponds to the one- or
two-body central system). Kinematically m < m/' < Ep,.

: 8 = m'; see PARI(19).

: (Q of the hard-scattering subprocess. The exact definition is process-
dependent, see MSTP(32).

: Q? of the hard-scattering subprocess; see PARI (21).

: @ of the outer hard-scattering subprocess. Agrees with PARI(21) fora2 — 1
or 2 — 2 process. For a 2 — 3 or 2 — 4 W/Z fusion process, it is set by the
W /Z mass scale, and for subprocesses 121 and 122 by the heavy-quark mass.
: Q? of the outer hard-scattering subprocess; see PARI (23).

: (@ scale used as maximum virtuality in parton showers. Is equal to PARI (23),
except for Deeply Inelastic Scattering processes when MSTP(22) > 1.

: (% scale in parton showers; see PARI (25).

PARI(32) : the momentum fractions z of the initial-state parton-shower ini-
tiators on side 1 and 2, respectively.

PARI(34) : the momentum fractions = taken by the partons at the hard
interaction, as used e.g. in the parton-distribution functions.

: Feynman-x, xp = x1 — vo =PARI(33) —PARI(34).

: T =38/s = x; xy =PARI(33) XPARI(34).

:y = (1/2) In(zy/25), i.e. rapidity of the hard-interaction subsystem in the
c.m. frame of the event as a whole.

: 7' =§/s =PARI(20) /PARI(12).

PARI(40) : the primordial k£, values selected in the two beam remnants.

. cosf, where 0 is the scattering angle of a 2 — 2 (or 2 — 1 — 2) interaction,
deﬁned in the rest frame of the hard-scattering subsystem.

: x,1.e. scaled transverse momentum of the hard-scattering subprocess, x| =
2P, /Eem = 2PARI(17) /PARI(11).

PARI(44) : zy3 and x4, i.e. longitudinal momentum fractions of the two
scattered partons, in the range —1 < x;, < 1, in the c.m. frame of the event as
a whole.

PARI(46) : x3 and x4, i.e. scaled energy fractions of the two scattered par-
tons, in the c.m. frame of the event as a whole.

PARI(48) : y; and yj, i.e. rapidities of the two scattered partons in the c.m.
frame of the event as a whole.

PARI(50) : n; and nj, i.e. pseudorapidities of the two scattered partons in
the c.m. frame of the event as a whole.

PARI(52) : cos®j; and cosfy, i.e. cosines of the polar angles of the two scat-
tered partons in the c.m. frame of the event as a whole.
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PARI(53),

PARI(55),

PARI(61)

PARI(65)

PARI(66)

PARI(67)

PARI(68)

PARI(69)

PARI(71),

PARI(73),

PARI(75),

PARI(77),

PARI(81)
PARI(91)

PARI (92)

PARI(93)

PARI(101)

PARI(102)

PARI(54) : 0; and 0, i.e. polar angles of the two scattered partons, defined
in the range 0 < #* < 7, in the c.m. frame of the event as a whole.

PARI(56) : azimuthal angles ¢35 and ¢} of the two scattered partons, defined
in the range —m < ¢* < 7, in the c.m. frame of the event as a whole.

: multiple interaction enhancement factor for current event. A large value
corresponds to a central collision and a small value to a peripheral one.

: sum of the transverse momenta of partons generated at the hardest interac-
tion of the event, excluding initial- and final-state radiation, i.e. 2xPARI (17).
Only intended for 2 — 2 or 2 — 1 — 2 processes, i.e. not implemented for
2 — 3 ones.

: sum of the transverse momenta of all partons generated at the hardest inter-
action, including initial- and final-state radiation, resonance decay products,
and primordial k.

: scalar sum of transverse momenta of partons generated at hard interactions,
excluding the hardest one (see PARI(65)), and also excluding all initial- and
final-state radiation. Is non-vanishing only in the multiple-interaction scenario.
: sum of transverse momenta of all partons generated at hard interactions,
excluding the hardest one (see PARI(66) ), but including initial- and final-state
radiation associated with those further interactions. Is non-vanishing only in
the multiple-interaction scenario. Since showering has not yet been added to
those additional interactions, it currently coincides with PARI(67).

: sum of transverse momenta of all partons generated in hard interactions
(PARI(66) + PARI(68)) and, additionally, of all beam remnant partons.

PARI(72) : sum of the momentum fractions z taken by initial-state parton-
shower initiators on side 1 and and side 2, excluding those of the hardest
interaction. Is non-vanishing only in the multiple-interaction scenario.

PARI(74) : sum of the momentum fractions = taken by the partons at the
hard interaction on side 1 and side 2, excluding those of the hardest interaction.
Is non-vanishing only in the multiple-interaction scenario.

PARI(76) : the x value of a photon that branches into quarks or gluons,
i.e. x at interface between initial-state QED and QCD cascades, for the old
photoproduction machinery..

PARI(78) : the x values selected for beam remnants that are split into two
objects, describing how the energy is shared (see MSTP(92) and MSTP(94)); is
vanishing if no splitting is needed.

: size of the threshold factor (enhancement or suppression) in the latest event
with heavy-flavour production; see MSTP(35).

: average multiplicity 7 of pile-up events, see MSTP(133). Only relevant for
MSTP(133)=1 or 2.

: average multiplicity (n) of pile-up events as actually simulated, i.e. with
multiplicity = 0 events removed and the high-end tail truncated. Only relevant
for MSTP(133)= 1 or 2.

: for MSTP(133)=1 it is the probability that a beam crossing will produce a pile-
up event at all, i.e. that there will be at least one hadron—hadron interaction;
for MSTP(133)=2 the probability that a beam crossing will produce a pile-
up event with one hadron-hadron interaction of the desired rare type. See
subsection 11.4.

: c.m. energy for the full collision, while PARI(11) gives the y-hadron or
~7 subsystem energy; used for virtual photons generated internally with the
’gamma/lepton’ option.

: full squared c.m. energy, while PARI(12) gives the subsystem squared en-
ergy; used for virtual photons generated internally with the ’gamma/lepton’
option.
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PARI(103), PARI(104) : x values, i.e. respective photon energy fractions of the incom-
ing lepton in the c.m. frame of the event; used for virtual photons generated
internally with the ’gamma/lepton’ option.

PARI(105), PARI(106) : @Q?* or P2, virtuality of the respective photon (thus the square
of VINT(3), VINT(4)); used for virtual photons generated internally with the
’gamma/lepton’ option.

PARI(107), PARI(108) : y values, i.e. respective photon light-cone energy fraction of
the incoming lepton; used for virtual photons generated internally with the
’gamma/lepton’ option.

PARI(109), PARI(110) : 6, scattering angle of the respective lepton in the c.m.
frame of the event; used for virtual photons generated internally with the
’gamma/lepton’ option.

PARI(111), PARI(112) : ¢, azimuthal angle of the respective scattered lepton in the
c.m. frame of the event; used for virtual photons generated internally with the
’gamma/lepton’ option.

PARI(113), PARI(114): the R factor defined at MSTP(17), giving a cross section en-
hancement from the contribution of resolved longitudinal photons.

9.7 How to Generate Weighted Events

By default PYTHIA generates unweighted events, i.e. all events in a run are on an equal
footing. This means that corners of phase space with low cross sections are poorly popu-
lated, as it should be. However, sometimes one is interested in also exploring such corners,
in order to gain a better understanding of physics. A typical example would be the jet
cross section in hadron collisions, which is dropping rapidly with increasing jet p,, and
where it is interesting to trace this drop over several orders of magnitude. Experimen-
tally this may be solved by prescaling events rates already at the trigger level, so that
all high-p, events are saved but only a fraction of the lower-p, ones. In this section we
outline procedures to generate events in a similar manner.

Basically two approaches can be used. One is to piece together results from different
subruns, where each subrun is restricted to some specific region of phase space. Within
each subrun all events then have the same weight, but subruns have to be combined ac-
cording to their relative cross sections. The other approach is to let each event come with
an associated weight, that can vary smoothly as a function of p;. These two alterna-
tives correspond to stepwise or smoothly varying prescaling factors in the experimental
analogue. We describe them one after the other.

The phase space can be sliced in many different ways. However, for the jet rate and
many other processes, the most natural variable would be p, itself. (For production of
a lepton pair by s-channel resonances, the invariant mass would be a better choice.) It
is not possible to specify beforehand the jet p,’s an event will contain, since this is a
combination of the p, of the hard scattering process with additional showering activity,
with hadronization, with underlying event and with the jet clustering approach actually
used. However, one would expect a strong correlation between the p, scale and the jet
p1’s. Therefore the full p, range can be subdivided into a set of ranges by using the
CKIN(3) and CKIN(4) variables as lower and upper limits. This could be done e.g. for
adjacent non-overlapping bins 10-20,20-40,40-70, etc.

Only if one would like to cover also very small p, is there a problem with this strategy:
since the naive jet cross section is divergent for p; — 0, a unitarization procedure is im-
plied by setting CKIN(3)=0 (or some other low value). This unitarization then disregards
the actual CKIN(3) and CKIN(4) values and generates events over the full phase space.
In order not to double count, then events above the intended upper limit of the first bin
have to be removed by brute force.

A simple but complete example of a code performing this task (with some primitive
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histogramming) is the following:

C...All real arithmetic in double precision.
IMPLICIT DOUBLE PRECISION(A-H, 0-Z)
C...Three Pythia functions return integers, so need declaring.
INTEGER PYK,PYCHGE,PYCOMP
C...EXTERNAL statement links PYDATA on most platforms.
EXTERNAL PYDATA
C...The event record.
COMMON/PYJETS/N,NPAD, K (4000,5) ,P(4000,5) ,V(4000,5)
C...Selection of hard scattering subprocesses.
COMMON/PYSUBS/MSEL ,MSELPD,MSUB (500) ,KFIN(2,-40:40) ,CKIN(200)
C...Parameters.
COMMON/PYPARS/MSTP (200) , PARP (200) ,MSTI (200) ,PARI (200)
C...Bins of pT.
DIMENSION PTBIN(10)
DATA PTBIN/ODO,10D0,20D0,40D0,70D0,110D0,170D0,250D0,350D0,1000D0/

C...Main parameters of run: c.m. energy and number of events per bin.
ECM=2000D0
NEV=1000

C...Histograms.

CALL PYBOOK(1,’dn_ev/dpThat’,100,0D0,500D0)

CALL PYBOOK(2,’dsigma/dpThat’,100,0D0,500D0)

CALL PYBOOK(3,’logl0(dsigma/dpThat)’,100,0D0,500D0)
CALL PYBOOK(4,’dsigma/dpTjet’,100,0D0,500D0)

CALL PYBOOK(5,’logl0(dsigma/dpTjet)’,100,0D0,500D0)
CALL PYBOOK(11,’dn_ev/dpThat, dummy’,100,0DO0,500D0)
CALL PYBOOK(12,’dn/dpTjet, dummy’,100,0D0,500D0)

C...Loop over pT bins and initialize.
DO 300 IBIN=1,9
CKIN(3)=PTBIN(IBIN)
CKIN(4)=PTBIN(IBIN+1)
CALL PYINIT(’CMS’,’p’,’pbar’,ECM)

C...Loop over events. Remove unwanted ones in first pT bin.
DO 200 IEV=1,NEV
CALL PYEVNT
PTHAT=PARI (17)
IF(IBIN.EQ.1.AND.PTHAT.GT.PTBIN(IBIN+1)) GOTO 200

C...Store pThat. Cluster jets and store variable number of pTjet.
CALL PYFILL(1,PTHAT,1DO)
CALL PYFILL(11,PTHAT,1DO)
CALL PYCELL(NJET)
DO 100 IJET=1,NJET
CALL PYFILL(12,P(N+IJET,5),1D0)
100 CONTINUE

C...End of event loop.
200  CONTINUE
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C...Normalize cross section to pb/GeV and add up.
FAC=1D9*PARI (1) /(DBLE(NEV)*5D0)
CALL PYOPER(2,’+’,11,2,1D0,FAC)
CALL PYOPER(4,’+’,12,4,1D0,FAC)

C...End of loop over pT bins.
300 CONTINUE

C...Take logarithm and plot.
CALL PYOPER(2,’L’,2,3,1D0,0D0)
CALL PYOPER(4,’L’,4,5,1D0,0DO0)
CALL PYNULL(11)
CALL PYNULL(12)
CALL PYHIST

END

The alternative to slicing the phase space is to used weighted events. This is possible
by making use of the PYEVWT routine:

CALL PYEVWT (WTXS)

Purpose: to allow you to reweight event cross sections, by process type and kinematics
of the hard scattering. There exists two separate modes of usage, described in
the following.

For MSTP(142)=1, it is assumed that the cross section of the process is correctly
given by default in PYTHIA, but that one wishes to generate events biased to
a specific region of phase space. While the WTXS factor therefore multiplies
the naive cross section in the choice of subprocess type and kinematics, the
produced event comes with a compensating weight PARI (10)=1./WTXS, which
should be used when filling histograms etc. In the PYSTAT (1) table, the cross
sections are unchanged (up to statistical errors) compared with the standard
cross sections, but the relative composition of events may be changed and need
no longer be in proportion to relative cross sections. A typical example of this
usage is if one wishes to enhance the production of high-p, events; then a
weight like WTXS= (p1 /p1o)? (with p,¢ some fixed number) might be appro-
priate. See PARI(2) for a discussion of overall normalization issues.

For MSTP(142)=2, on the other hand, it is assumed that the true cross sec-
tion is really to be modified by the multiplicative factor WTXS. The generated
events therefore come with unit weight, just as usual. This option is really
equivalent to replacing the basic cross sections coded in PYTHIA, but allows
more flexibility: no need to recompile the whole of PYTHIA.

The routine will not be called unless MSTP(142) > 1, and never if ‘minimum-
bias’-type events (including elastic and diffractive scattering) are to be gen-
erated as well. Further, cross sections for additional multiple interactions or
pile-up events are never affected. A dummy routine PYEVWT is included in the
program file, so as to avoid unresolved external references when the routine is
not used.

WTXS: multiplication factor to ordinary event cross section; to be set (by you) in
PYEVWT call.

Remark : at the time of selection, several variables in the MINT and VINT arrays in
the PYINT1 common block contain information that can be used to make the
decision. The routine provided in the program file explicitly reads the variables
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that have been defined at the time PYEVWT is called, and also calculates some
derived quantities. The given list of information includes subprocess type ISUB,
Eom, 8,1, 0, p1, x1, Ta, Tp, T, Yy, T', COS é, and a few more. Some of these may
not be relevant for the process under study, and are then set to zero.

Warning: the weights only apply to the hard scattering subprocesses. There is no way to
reweight the shape of initial- and final-state showers, fragmentation, or other
aspects of the event.

There are some limitations to the facility. PYEVWT is called at an early stage of the
generation process, when the hard kinematics is selected, well before the full event is
constructed. It then cannot be used for low-p , elastic or diffractive events, for which no
hard kinematics has been defined. If such processes are included, the event weighting is
switched off. Therefore it is no longer an option to run with CKIN(3)=0

Which weight expression to use may take some trial and error. In the above case, a
reasonable ansatz seems to be a weight behaving like p$, where four powers of p, are
motivated by the partonic cross section behaving like 1/p?1, and the remaining two by the
fall-off of parton densities. An example for the same task as above one would then be:

C...All real arithmetic in double precision.
IMPLICIT DOUBLE PRECISION(A-H, 0-Z)

C...Three Pythia functions return integers, so need declaring.
INTEGER PYK,PYCHGE,PYCOMP

C...EXTERNAL statement links PYDATA on most platforms.
EXTERNAL PYDATA

C...The event record.
COMMON/PYJETS/N,NPAD,K (4000,5) ,P(4000,5) ,V(4000,5)

C...Selection of hard scattering subprocesses.
COMMON/PYSUBS/MSEL ,MSELPD,MSUB(500) ,KFIN(2,-40:40) ,CKIN(200)

C...Parameters.
COMMON/PYPARS/MSTP (200) , PARP (200) ,MSTI (200) ,PARI (200)

C...Main parameters of run: c.m. energy, pTmin and number of events.
ECM=2000D0
CKIN(3)=5D0
NEV=10000

C...Histograms.
CALL PYBOOK(1,’dn_ev/dpThat’,100,0D0,500D0)
CALL PYBOOK(2,’dsigma/dpThat’,100,0D0,500D0)
CALL PYBOOK(3,’logl0(dsigma/dpThat)’,100,0D0,500D0)
CALL PYBOOK(4,’dsigma/dpTjet’,100,0D0,500D0)
CALL PYBOOK(5,’log10(dsigma/dpTjet)’,100,0D0,500D0)

C...Initialize with weighted events.
MSTP(142)=1
CALL PYINIT(’CMS’,’p’,’pbar’,ECM)

C...Loop over events; read out pThat and event weight.
DO 200 IEV=1,NEV
CALL PYEVNT
PTHAT=PARI (17)
WT=PARI(10)

C...Store pThat. Cluster jets and store variable number of pTjet.
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CALL PYFILL(1,PTHAT,1DO)
CALL PYFILL(2,PTHAT,WT)
CALL PYCELL(NJET)
DO 100 IJET=1,NJET
CALL PYFILL(4,P(N+IJET,5),WT)
100  CONTINUE

C...End of event loop.
200  CONTINUE

C...Normalize cross section to pb/GeV, take logarithm and plot.
FAC=1D9*PARI (2)/5D0
CALL PYFACT(2,FAC)
CALL PYFACT(4,FAC)
CALL PYOPER(2,’L’,2,3,1D0,0D0)
CALL PYOPER(4,’L’,4,5,1D0,0DO0)
CALL PYHIST

END

C*********************************>I<***************************
SUBROUTINE PYEVWT (WTXS)

C...Double precision and integer declarations.
IMPLICIT DOUBLE PRECISION(A-H, 0-Z)
IMPLICIT INTEGER(I-N)

INTEGER PYK,PYCHGE,PYCOMP

C...Common block.

COMMON/PYINT1/MINT (400) ,VINT (400)

C...Read out pThat”2 and set weight.
PT2=VINT(48)
WTXS=PT2**3

RETURN
END

Note that, in PYEVWT one cannot look for p; in PARI(17), since this variable is only set
at the end of the event generation. Instead the internal VINT(48) is used. The dummy
copy of the PYEVWT routine found in the PYTHIA code shows what is available and how
to access this.

9.8 How to Run with Varying Energies

It is possible to use PYTHIA in a mode where the energy can be varied from one event to
the next, without the need to re-initialize with a new PYINIT call. This allows a significant
speed-up of execution, although it is not as fast as running at a fixed energy. It can not
be used for everything — we will come to the fine print at the end — but it should be
applicable for most tasks.

The master switch to access this possibility is in MSTP(171). By default it is off,
so you must set MSTP(171)=1 before initialization. There are two submodes of running,
with MSTP(172) being 1 or 2. In the former mode, PYTHIA will generate an event at the
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requested energy. This means that you have to know which energy you want beforehand.
In the latter mode, PYTHIA will often return without having generated an event — with
flag MSTI(61)=1 to signal that — and you are then requested to give a new energy. The
energy spectrum of accepted events will then, in the end, be your naive input spectrum
weighted with the cross-section of the processes you study. We will come back to this.

The energy can be varied, whichever frame is given in the PYINIT call. (Except for
»USER’, where such information is fed in via the HEPEUP common block and thus beyond
the control of PyTHIA.) When the frame is >CMS’, PARP(171) should be filled with the
fractional energy of each event, i.e. E., =PARP(171) xWIN, where WIN is the nominal
c.m. energy of the PYINIT call. Here PARP(171) should normally be smaller than unity,
i.e. initialization should be done at the maximum energy to be encountered. For the
"FIXT’ frame, PARP(171) should be filled by the fractional beam energy of that one,
i.e. Fyeam =PARP(171) XWIN. For the >3MOM’, >4MOM’ and ’5MOM’ options, the two four-
momenta are given in for each event in the same format as used for the PYINIT call. Note
that there is a minimum c.m. energy allowed, PARP (2). If you give in values below this, the
program will stop for MSTP(172)=1, and will return with MSTI(61)=1 for MSTP(172)=1.

To illustrate the use of the MSTP(172)=2 facility, consider the case of beamstrahlung
in ete™ linear colliders. This is just for convenience; what is said here can be translated
easily into other situations. Assume that the beam spectrum is given by D(z), where z
is the fraction retained by the original e after beamstrahlung. Therefore 0 < z < 1 and
the integral of D(z) is unity. This is not perfectly general; one could imagine branchings
e~ — e 7y — e ete, which gives a multiplication in the number of beam particles. This
could either be expressed in terms of a D(z) with integral larger than unity or in terms
of an increased luminosity. We will assume the latter, and use D(z) properly normalized.
Given a nominal s = 4F2,, . the actual s’ after beamstrahlung is given by s’ = z;2ss.
For a process with a cross section o(s) the total cross section is then

Ttot = /01 /01 D(z1) D(22)0(z1295) dzy dzg . (158)

The cross section ¢ may in itself be an integral over a number of additional phase space
variables. If the maximum of the differential cross section is known, a correct procedure
to generate events is

1. pick z; and zy according to D(z;)dz; and D(zs) dzs, respectively;

2. pick a set of phase space variables of the process, for the given s’ of the event;

3. evaluate o(s’) and compare with oyay;

4. if event is rejected, then return to step 1 to generate new variables;

5. else continue the generation to give a complete event.

You as a user are assumed to take care of step 1, and present the resulting kinematics
with incoming et and e~ of varying energy. Thereafter PYTHIA will do steps 2-5, and
either return an event or put MSTI(61)=1 to signal failure in step 4.

The maximization procedure does search in phase space to find op,.,, but it does not
vary the s’ energy in this process. Therefore the maximum search in the PYINIT call
should be performed where the cross section is largest. For processes with increasing
cross section as a function of energy this means at the largest energy that will ever be
encountered, i.e. s = s in the case above. This is the ‘standard’ case, but often one
encounters other behaviours, where more complicated procedures are needed. One such
case would be the process eTe™ — Z** — Z°h® which is known to have a cross section
that increases near the threshold but is decreasing asymptotically. If one already knows
that the maximum, for a given Higgs mass, appears at 300 GeV, say, then the PYINIT
call should be made with that energy, even if subsequently one will be generating events
for a 500 GeV collider.

In general, it may be necessary to modify the selection of z; and z, and assign a
compensating event weight. For instance, consider a process with a cross section behaving
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roughly like 1/s. Then the oy expression above may be rewritten as

1 1D D
Otot = / / ﬁ ﬁ 21220'<21225) dz dz . (159)
o Jo 2 z

2

The expression z1250(s") is now essentially flat in &, i.e. not only can o« be found at
a convenient energy such as the maximum one, but additionally the PYTHIA generation
efficiency (the likelihood of surviving step 4) is greatly enhanced. The price to be paid is
that z has to be selected according to D(z)/z rather than according to D(z). Note that
D(z)/z is not normalized to unity. One therefore needs to define

1D
1= [P, (160)
0oz
and a properly normalized
1 D(2)
D'(z) = — . 161
() =72 (161)
Then -
Ttot :/ / D'(21) D'(22) I 21290 (21298) d2z1 2y . (162)
0 Jo

Therefore the proper event weight is 7% z;2,. This weight should be stored by you, for each
event, in PARP(173). The maximum weight that will be encountered should be stored
in PARP(174) before the PYINIT call, and not changed afterwards. It is not necessary
to know the precise maximum; any value larger than the true maximum will do, but
the inefficiency will be larger the cruder the approximation. Additionally you must put
MSTP(173)=1 for the program to make use of weights at all. Often D(z) is not known
analytically; therefore Zp is also not known beforehand, but may have to be evaluated (by
you) during the course of the run. Then you should just use the weight z;z5 in PARP (173)
and do the overall normalization yourself in the end. Since PARP(174)=1 by default, in
this case you need not set this variable specially. Only the cross sections are affected by
the procedure selected for overall normalization, the events themselves still are properly
distributed in s’ and internal phase space.

Above it has been assumed tacitly that D(z) — 0 for z — 0. If not, D(2)/z is
divergent, and it is not possible to define a properly normalized D’(z) = D(z)/z. If the
cross section is truly diverging like 1/s, then a D(z) which is nonvanishing for z — 0
does imply an infinite total cross section, whichever way things are considered. In cases
like that, it is necessary to impose a lower cut on z, based on some physics or detector
consideration. Some such cut is anyway needed to keep away from the minimum c.m.
energy required for PYTHIA events, see above.

The most difficult cases are those with a very narrow and high peak, such as the
Z°. One could initialize at the energy of maximum cross section and use D(z) as is,
but efficiency might turn out to be very low. One might then be tempted to do more
complicated transforms of the kind illustrated above. As a rule it is then convenient to
work in the variables 7, = 2125 and y, = (1/2)In(21/22), cf. section 7.2.

Clearly, the better the behaviour of the cross section can be modelled in the choice
of z; and 2, the better the overall event generation efficiency. Even under the best of
circumstances, the efficiency will still be lower than for runs with fix energy. There is also a
non-negligible time overhead for using variable energies in the first place, from kinematics
reconstruction and (in part) from the phase space selection. One should therefore not use
variable energies when not needed, and not use a large range of energies /s if in the end
only a smaller range is of experimental interest.

This facility may be combined with most other aspects of the program. For instance,
it is possible to simulate beamstrahlung as above and still include bremsstrahlung with
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MSTP(11)=1. Further, one may multiply the overall event weight of PARP(173) with a
kinematics-dependent weight given by PYEVWT, although it is not recommended (since the
chances of making a mistake are also multiplied). However, a few things do not work.

e [t is not possible to use pile-up events, i.e. you must have MSTP(131)=0.

e The possibility of giving in your own cross-section optimization coefficients, option
MSTP(121)=2, would require more input than with fixed energies, and this option
should therefore not be used. You can still use MSTP(121)=1, however.

e The multiple interactions scenario with MSTP(82) > 2 only works approximately for
energies different from the initialization one. If the c.m. energy spread is smaller than
a factor 2, say, the approximation should be reasonable, but if the spread is larger
one may have to subdivide into subruns of different energy bins. The initialization
should be made at the largest energy to be encountered — whenever multiple inter-
actions are possible (i.e. for incoming hadrons and resolved photons) this is where
the cross sections are largest anyway, and so this is no further constraint. There
is no simple possibility to change PARP(82) during the course of the run, i.e. an
energy-independent p,, must be assumed. The default option MSTP(82)=1 works
fine, i.e. does not suffer from the constraints above. If so desired, p, ,;, =PARP(81)
can be set differently for each event, as a function of c.m. energy. Initialization
should then be done with PARP(81) as low as it is ever supposed to become.

9.9 How to Include External Processes

Despite a large repertory of processes in PYTHIA, the number of interesting missing ones
clearly is even larger, and with time this discrepancy is likely to increase. There are
several reasons why it is not practicable to imagine a PYTHIA which has ‘everything’.
One is the amount of time it takes to implement a process for the few PYTHIA authors,
compared with the rate of new cross section results produced by the rather larger matrix-
element calculations community. Another is the length of currently produced matrix-
element expressions, which would make the program very bulky. A third argument is
that, whereas the phase space of 2 — 1 and 2 — 2 processes can be set up once and for
all according to a reasonably flexible machinery, processes with more final-state particles
are less easy to generate. To achieve a reasonable efficiency, it is necessary to tailor the
phase-space selection procedure to the dynamics of the given process, and to the desired
experimental cuts.

At times, simple solutions may be found. Some processes may be seen just as trivial
modifications of already existing ones. For instance, you might want to add some extra
term, corresponding to contact interactions, to the matrix elements of a PYTHIA 2 — 2
process. In that case it is not necessary to go through the machinery below, but instead
you can use the PYEVWT routine (subsection 9.7) to introduce an additional weight for the
event, defined as the ratio of the modified to the unmodified differential cross sections.
If you use the option MSTP(142)=2, this weight is considered as part of the ‘true’ cross
section of the process, and the generation is changed accordingly.

A PYTHIA expert could also consider implementing a new process along the lines of the
existing ones, hardwired in the code. Such a modification would have to be ported anytime
the PYTHIA program is upgraded, however (unless it is made available to the PYTHIA
authors and incorporated into the public distribution). For this and other reasons, we
will not consider this option in detail, but only provide a few generic remarks. The first
step is to pick a process number ISUB among ones not in use. The process type needs
to be set in ISET(ISUB) and, if the final state consists of massive particles, these should
be specified in KFPR(ISUB, 1) and KFPR(ISUB,2). Output is improved if a process name
is set in PROC(ISUB). The second and main step is to code the cross section of the hard
scattering subprocess in the PYSIGH routine. Usually the best starting point is to use the
code of an existing similar process as a template for the new code required. The third step
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is to program the selection of the final state in PYSCAT, normally a simple task, especially
if again a similar process (especially with respect to colour flow) can be used as template.
In many cases the steps above are enough, in others additional modifications are required
to PYRESD to handle process-specific non-isotropic decays of resonances. Further code
may also be required e.g. if a process can proceed via an intermediate resonance that can
be on the mass shell.

The recommended solution, if a desired process is missing, is instead to include it
into PYTHIA as an ‘external’ process. In this section we will describe how it is possible
to specify the parton-level state of some hard-scattering process in a common block.
(‘Parton-level’ is not intended to imply a restriction to quarks and gluons as interacting
particles, but only that quarks and gluons are given rather than the hadrons they will
produce in the observable final state.) PyTHIA will read this common block, and add
initial- and final-state showers, beam remnants and underlying events, fragmentation and
decays, to build up an event in as much detail as an ordinary PYTHIA one. Another
common block is to be filled with information relevant for the run as a whole, where
beams and processes are specified.

Such a facility has been available since long, and has been used e.g. together with the
CoMPHEP package. COMPHEP [Puk99] is mainly intended for the automatic compu-
tation of matrix elements, but also allows the sampling of phase space according to these
matrix elements and thereby the generation of weighted or unweighted events. These
events can be saved on disk and thereafter read back in to PyTHIA for subsequent con-
sideration [Bel00].

At the Les Houches 2001 workshop it was decided to develop a common standard,
that could be used by all matrix-elements-based generators to feed information into any
complete event generator [BooO1]. It is similar to, but in its details different from, the
approach previously implemented in PYTHIA. Furthermore, it uses the same naming
convention: all names in common blocks end with UP, short for User(-defined) Process.
This produces some clashes. Therefore the old facility, existing up to and including
PyTHIA 6.1, has been completely removed and replaced by the new one. The new code
is still under development, and not all particulars have yet been implemented. In the
description below we will emphasize current restrictions to the standard, as well as the
solutions to aspects not specified by the standard.

In particular, even with the common block contents defined, it is not clear where they
are to be filled, i.e. how the external supplier of parton-level events should synchronize
with PYTHIA. The solution adopted here — recommended in the standard — is to intro-
duce two subroutines, UPINIT and UPEVNT. The first is called by PYINIT at initialization
to obtain information about the run itself, and the other called by PYEVNT each time
a new event configuration is to be fed in. We begin by describing these two steps and
their related common blocks, before proceeding with further details and examples. The
description is cast in a PYTHIA-oriented language, but for the common block contents it
closely matches the generator-neutral standard in [BooO1]. Restrictions to or extensions
of the standard should be easily recognized, but in case you are vitally dependent on
following the standard exactly, you should of course check [Boo01].

If you want to provide routines based on this standard, free to be used by a larger
community, please inform torbjorn@thep.lu.se. The intention is to create a list of links
to such routines, accessible from the standard PyYTHIA webpage, if there is interest.

9.9.1 Run information

When PYINIT is called in the main program, with >USER’ as first argument (which makes
the other arguments dummy), it signals that external processes are to be implemented.
Then PYINIT, as part of its initialization tasks, will call the routine UPINIT.
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CALL UPINIT

Purpose: routine to be provided by you when you want to implement external processes,

Note 1:

Note 2:

wherein the contents of the HEPRUP common block are set. This information
specifies the character of the run, both beams and processes, see further below.
alternatively, the HEPRUP common block could be filled already before PYINIT
is called, in which case UPINIT could be empty. We recommend UPINIT as the
logical place to collect the relevant information, however.

a dummy copy of UPINIT is distributed with the program, in order to avoid
potential problems with unresolved external references. This dummy should
not be linked when you supply your own UPINIT routine.

INTEGER MAXPUP

PARAMETER (MAXPUP=100)

INTEGER IDBMUP,PDFGUP,PDFSUP, IDWTUP,NPRUP,LPRUP

DOUBLE PRECISION EBMUP,XSECUP,XERRUP,XMAXUP
COMMON/HEPRUP/IDBMUP (2) ,EBMUP (2) ,PDFGUP (2) ,PDFSUP(2) ,
&IDWTUP,NPRUP, XSECUP (MAXPUP) , XERRUP (MAXPUP) , XMAXUP (MAXPUP) ,
&LPRUP (MAXPUP)

Purpose: to contain the initial information necessary for the subsequent generation of

MAXPUP :

IDBMUP :

EBMUP :

complete events from externally provided parton configurations. The IDBMUP,
EBMUP, PDFGUP and PDFSUP variables specify the nature of the two incoming
beams. IDWTUP is a master switch, selecting the strategy to be used to mix
different processes. NPRUP gives the number of different external processes
to mix, and XSECUP, XERRUP, XMAXUP and LPRUP information on each of these.
The contents in this common block must remain unchanged by the user during
the course of the run, once set in the initialization stage.

This common block should be filled in the UPINIT routine or, alternatively,
before the PYINIT call. During the run, PYTHIA may update the XMAXUP
values as required.

the maximum number of distinguishable processes that can be defined. (Each
process in itself could consist of several subprocesses that have been distin-
guished in the parton-level generator, but where this distinction is not carried
along.)

the PDG codes of the two incoming beam particles (or, in alternative termi-
nology, the beam and target particles).

In PYTHIA, this replaces the information normally provided by the BEAM and
TARGET arguments of the PYINIT call. Only particles which are acceptable
BEAM or TARGET arguments may also be used in IDBMUP. The ’gamma/lepton’
options are not available.

the energies, in GeV, of the two incoming beam particles. The first (second)
particle is taken to travel in the +2z (—z) direction.

The standard also allows non-collinear and varying-energy beams to be speci-
fied, see ISTUP = -9 below, but this is not yet implemented in PYTHIA.

PDFGUP, PDFSUP : the author group (PDFGUP) and set (PDFSUP) of the parton distribu-

tions of the two incoming beams, as used in the generation of the parton-level
events. Numbers are based on the PDFLIB [Plo93] lists. This enumeration
may not always be up to date, but it provides the only unique integer labels
for parton distributions that we have. Where no codes are yet assigned to
the parton distribution sets used, one should do as best as one can, and be
prepared for more extensive user interventions to interpret the information.
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IDWTUP

For lepton beams, or when the information is not provided for other reasons,
one should put PDFGUP = PDFSUP = -1.

By knowing which set has been used, it is possible to reweight cross sections
event by event, to correspond to another set.

Note that PYTHIA does not access the PDFGUP or PDFSUP values in its descrip-
tion of internal processes or initial-state showers. If you want this to happen,
you have to manipulate the MSTP(51) - MSTP(56) switches. For instance,
to access PDFLIB for protons, put MSTP(51) = 1000*PDFGUP + PDFSUP and
MSTP(52) = 2 in UPINIT. (And remove the dummy PDFLIB routines, as de-
scribed for MSTP(52).) Also note that PDFGUP and PDFSUP allow an inde-
pendent choice of parton distributions on the two sides of the event, whereas
PyTHIA only allows one single choice for all protons, another for all pions and
a third for all photons.

master switch dictating how event weights and cross sections should be in-
terpreted. Several different models are presented in detail below. There will
be tradeoffs between these, e.g. a larger flexibility to mix and re-mix several
different processes could require a larger administrative machinery. Therefore
the best strategy would vary, depending on the format of the input provided
and the output desired. In some cases, parton-level configurations have al-
ready been generated with one specific model in mind, and then there may be
no choice.

IDWTUP significantly affects the interpretation of XWGTUP, XMAXUP and XSECUP,
as described below, but the basic nomenclature is the following. XWGTUP is the
event weight for the current parton-level event, stored in the HEPEUP common
block. For each allowed external process i, XMAXUP(i) gives the maximum
event weight that could be encountered, while XSECUP (1) is the cross section
of the process. Here 1 is an integer in the range between 1 and NPRUP; see the

LPRUP description below for comments on alternative process labels.

parton-level events come with a weight when input to PYTHIA, but are
then accepted or rejected, so that fully generated events at output have a
common weight, customarily defined as +1. The event weight XWGTUP is
a non-negative dimensional quantity, in pb (converted to mb in PYTHIA),
with a mean value converging to the total cross section of the respective
process. For each process i, the XMAXUP (1) value provides an upper esti-
mate of how large XWGTUP numbers can be encountered. There is no need
to supply an XSECUP (1) value; the cross sections printed with PYSTAT (1)
are based entirely on the averages of the XWGTUP numbers (with a small
correction for the fraction of events that PYEVNT fails to generate in full
for some reason).

The strategy is that PYEVNT selects which process i should be generated
next, based on the relative size of the XMAXUP (i) values. The UPEVNT
routine has to fill the HEPEUP common block with a parton-level event
of the requested type, and give its XWGTUP event weight. The event is
accepted by PYEVNT with probability XWGTUP/XMAXUP(i). In case of re-
jection, PYEVNT selects a new process i and asks for a new event. This
ensures that processes are mixed in proportion to their average XWGTUP
values.

This model presumes that UPEVNT is able to return a parton-level event
of the process type requested by PYEVNT. It works well if each process is
associated with an input stream of its own, either a subroutine generat-
ing events ‘on the fly’ or a file of already generated events. It works less
well if parton-level events from different processes already are mixed in
a single file, and therefore cannot easily be returned in the order wanted
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by PYEVNT. In the latter case one should either use another model or else
consider reducing the level of ambition: even if you have mixed several
different subprocesses on a file, maybe there is no need for PYTHIA to
know this finer classification, in which case we may get back to a situation
with one ‘process’ per external file. Thus the subdivision into processes
should be a matter of convenience, not a straight jacket. Specifically, the
shower and hadronization treatment of a parton-level event is indepen-
dent of the process label assigned to it.

If the events of some process are already available unweighted, then a
correct mixing of this process with others is ensured by putting XWGTUP
= XMAXUP (i), where both of these numbers now is the total cross section
of the process.

Each XMAXUP (i) value must be known from the very beginning, e.g. from
an earlier exploratory run. If a larger value is encountered during the
course of the run, a warning message will be issued and the XMAXUP (i)
value (and its copy in XSEC(ISUB,1)) increased. Events generated be-
fore this time will have been incorrectly distributed, both in the process
composition and in the phase space of the affected process, so that a
bad estimate of XMAXUP (i) may require a new run with a better starting
value.

The model described here agrees with the one used for internal PYTHIA
processes, and these can therefore freely be mixed with the external ones.
Internal processes are switched on with MSUB(ISUB) = 1, as usual, either
before the PYINIT call or in the UPINIT routine. One cannot use MSEL to
select a predefined set of processes, for technical reasons, wherefore MSEL
= 0 is hardcoded when external processes are included.

A reweighting of events is feasible, e.g. by including a kinematics-
dependent K factor into XWGTUP, so long as XMAXUP (i) is also properly
modified to take this into account. Optionally it is also possible to pro-
duce events with non-unit weight, making use the PYEVWT facility, see sub-
section 9.7. This works exactly the same way as for internal PYTHIA pro-
cesses, except that the event information available inside PYEVWT would
be different for external processes. You may therefore wish to access the
HEPEUP common block inside your own copy of PYEVWT, where you cal-
culate the event weight.

In summary, this option provides maximal flexibility, but at the price of
potentially requiring the administration of several separate input streams
of parton-level events.

same as = 1 above, except that event weights may be either positive or
negative on input, and therefore can come with an output weight of +1
or —1. This weight is uniquely defined by the sign of XWGTUP. It is also
stored in PARI(7). The need for negative-weight events arises in some
next-to-leading-order calculations, but there are inherent dangers, dis-
cussed in subsection 9.9.4 below.

In order to allow a correct mixing between processes, a process of inde-
terminate cross section sign has to be split up in two, where one always
gives a positive or vanishing XWGTUP, and the other always gives it neg-
ative or vanishing. The XMAXUP(i) value for the latter process should
give the negative XWGTUP of largest magnitude that will be encountered.
PYEVNT selects which process i that should be generated next, based on
the relative size of the |XMAXUP(i)| values. A given event is accepted
with probability |XWGTUP|/|XMAXUP (i) |.

parton-level events come with a weight when input to PYTHIA, but
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are then accepted or rejected, so that events at output have a com-
mon weight, customarily defined as +1. The non-negative event
weight XWGTUP and its maximum value XMAXUP(i) may or may not
be dimensional quantities; it does not matter since only the ratio
XWGTUP/XMAXUP (i) will be used. Instead XSECUP (i) contains the process
cross section in pb (converted to mb in PYTHIA). It is this cross section
that appears in the PYSTAT(1) table, only modified by the small fraction
of events that PYEVNT fails to generate in full for some reason.

The strategy is that PYEVNT selects which process i should be generated
next, based on the relative size of the XSECUP(i) values. The UPEVNT
routine has to fill the HEPEUP common block with a parton-level event
of the requested type, and give its XWGTUP event weight. The event is
accepted by PYEVNT with probability XWGTUP/XMAXUP(i). In case of re-
jection, the process number i is retained and PYEVNT asks for a new event
of this kind. This ensures that processes are mixed in proportion to their
XSECUP (i) values.

This model presumes that UPEVNT is able to return a parton-level event
of the process type requested by PYEVNT, with comments exactly as for
the = 1 option.

If the events of some process are already available unweighted, then a
correct mixing of this process with others is ensured by putting XWGTUP
= XMAXUP(1i).

Each XMAXUP(i) and XSECUP(i) value must be known from the very
beginning, e.g. from an earlier integration run. If a larger value is en-
countered during the course of the run, a warning message will be issued
and the XMAXUP (i) value increased. This will not affect the process com-
position, but events generated before this time will have been incorrectly
distributed in the phase space of the affected process, so that a bad esti-
mate of XMAXUP (i) may require a new run with a better starting value.
While the generation model is different from the normal internal PyTHIA
one, it is sufficiently close that internal processes can be freely mixed
with the external ones, exactly as described for the = 1 option. In such
a mix, internal processes are selected according to their equivalents of
XMAXUP (i) and at rejection a new i is selected, whereas external ones
are selected according to XSECUP (i) with i retained when an event is
rejected.

A reweighting of individual events is no longer simple, since this would
change the XSECUP(i) value nontrivially. Thus a new integration run
with the modified event weights would be necessary to obtain new
XSECUP (i) and XMAXUP(i) values. An overall rescaling of each process
separately can be obtained by modifying the XSECUP (i) values accord-
ingly, however, e.g. by a relevant K factor.

In summary, this option is similar to the = 1 one. The input of
XSECUP (i) allows good cross section knowledge also in short test runs,
but at the price of a reduced flexibility to reweight events.

same as = 2 above, except that event weights may be either positive or
negative on input, and therefore can come with an output weight of +1
or —1. This weight is uniquely defined by the sign of XWGTUP. It is also
stored in PARI(7). The need for negative-weight events arises in some
next-to-leading-order calculations, but there are inherent dangers, dis-
cussed in subsection 9.9.4 below.

In order to allow a correct mixing between processes, a process of inde-
terminate cross section sign has to be split up in two, where one always
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gives a positive or vanishing XWGTUP, and the other always gives it neg-
ative or vanishing. The XMAXUP(i) value for the latter process should
give the negative XWGTUP of largest magnitude that will be encountered,
and XSECUP (i) should give the integrated negative cross section. PYEVNT
selects which process i that should be generated next, based on the rel-
ative size of the |XSECUP(i)| values. A given event is accepted with
probability |XWGTUP|/|XMAXUP (i) |.

parton-level events come with unit weight when input to PYTHIA, XWGTUP
= 1, and are thus always accepted. This makes the XMAXUP (i) superflu-
ous, while XSECUP (i) should give the cross section of each process.

The strategy is that that the next process type i is selected by the user
inside UPEVNT, at the same time as the HEPEUP common block is filled
with information about the parton-level event. This event is then un-
conditionally accepted by PYEVNT, except for the small fraction of events
that PYEVNT fails to generate in full for some reason.

This model allows UPEVNT to read events from a file where different pro-
cesses already appear mixed. Alternatively, you are free to devise and
implement your own mixing strategy inside UPEVNT, e.g. to mimic the
ones already outlined for PYEVNT in = 1 and = 2 above.

The XSECUP (i) values should be known from the beginning, in order for
PYSTAT(1) to produce a sensible cross section table. This is the only
place where it matters, however. That is, the processing of events inside
PyTHIA is independent of this information.

In this model it is not possible to mix with internal PYTHIA processes,
since not enough information is available to perform such a mixing.

A reweighting of events is completely in the hands of the UPEVNT author.
In the case that all events are stored in a single file, and all are to be
handed on to PYEVNT, only a common K factor applied to all processes
would be possible.

In summary, this option puts more power — and responsibility — in the
hands of the author of the parton-level generator. It is very convenient
for the processing of unweighted parton-level events stored in a single
file. The price to be paid is a reduced flexibility in the reweighting of
events, or in combining processes at will.

same as = 3 above, except that event weights may be either +1 or —1.
This weight is uniquely defined by the sign of XWGTUP. It is also stored
in PARI(7). The need for negative-weight events arises in some next-to-
leading-order calculations, but there are inherent dangers, discussed in
subsection 9.9.4 below.

Unlike the = -1 and = -2 options, there is no need to split a process in
two, each with a definite XWGTUP sign, since PYEVNT is not responsible for
the mixing of processes. It may well be that the parton-level-generator
author has enforced such a split, however, to solve a corresponding mixing
problem inside UPEVNT. Information on the relative cross section in the
negative- and positive-weight regions may also be useful to understand
the character and validity of the calculation (large cancellations means
trouble!).

parton-level events come with a weight when input to PYTHIA, and this
weight is to be retained unchanged at output. The event weight XWGTUP is
a non-negative dimensional quantity, in pb (converted to mb in PYTHIA,
and as such also stored in PARI(7)), with a mean value converging to
the total cross section of the respective process. When histogramming
results, one of these event weights would have to be used.
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NPRUP :

XSECUP :

XERRUP :

XMAXUP :

LPRUP :

The strategy is exactly the same as = 3 above, except that the event
weight is carried along from UPEVNT to the PYEVNT output. Thus again
all control is in the hands of the UPEVNT author.

A cross section can be calculated from the average of the XWGTUP values,
as in the = 1 option, and is displayed by PYSTAT(1). Here it is of purely
informative character, however, and does not influence the generation
procedure. Neither XSECUP (i) or XMAXUP (i) needs to be known or sup-
plied.

In this model it is not possible to mix with internal PYTHIA processes,
since not enough information is available to perform such a mixing.

A reweighting of events is completely in the hands of the UPEVNT author,
and is always simple, also when events appear sequentially stored in a
single file.

In summary, this option allows maximum flexibility for the parton-level-
generator author, but potentially at the price of spending a significant
amount of time processing events of very small weight. Then again, in
some cases it may be an advantage to have more events in the tails of a
distribution in order to understand those tails better.

same as = 4 above, except that event weights in XWGTUP may be either
positive or negative. In particular, the mean value of XWGTUP is con-
verging to the total cross section of the respective process. The need for
negative-weight events arises in some next-to-leading-order calculations,
but there are inherent dangers, discussed in subsection 9.9.4 below.
Unlike the = -1 and = -2 options, there is no need to split a process in
two, each with a definite XWGTUP sign, since PYEVNT does not have to mix
processes. However, as for option = -3, such a split may offer advantages
in understanding the character and validity of the calculation.

the number of different external processes, with information stored in the first
NPRUP entries of the XSECUP, XERRUP, XMAXUP and LPRUP arrays.

cross section for each external process, in pb. This information is mandatory
for IDWTUP = 42, helpful for 43, and not used for the other options.

the statistical error on the cross section for each external process, in pb.
PyTHIA will never make use of this information, but if it is available anyway
it provides a helpful service to the user of parton-level generators.

Note that, if a small number n,. of events pass the experimental selection
cuts, the statistical error on this cross section is limited by do /o ~ 1/,/Nacc,
irrespectively of the quality of the original integration. Furthermore, at least
in hadronic physics, systematic errors from parton distributions and higher
orders typically are much larger than the statistical errors.

the maximum event weight XWGTUP that is likely to be encountered for each
external process. For IDWTUP = =1 it has dimensions pb, while the dimen-
sionality need not be specified for +2. For the other IDWTUP options it is not
used.

a unique integer identifier of each external process, free to be picked by you for
your convenience. This code is used in the IDPRUP identifier of which process
occured.

In PYTHIA, an external process is thus identified by three different integers.
The first is the PYTHIA process number, ISUB. This number is assigned by
PYINIT at the beginning of each run, by scanning the ISET array for unused
process numbers, and reclaiming such in the order they are found. The sec-
ond is the sequence number i, running from 1 through NPRUP, used to find
information in the cross section arrays. The third is the LPRUP (i) number,
which can be anything that the user wants to have as a unique identifier, e.g.
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in a larger database of processes. For PYTHIA to handle conversions, the two
KFPR numbers of a given process ISUB are overwritten with the second and
third numbers above. Thus the first external process will land in ISUB = 4
(currently), and could have LPRUP(1) = 13579. In a PYSTAT(1) call, it would
be listed as User process 13579.

9.9.2 Event information

Inside the event loop of the main program, PYEVNT will be called to generate the next event,
as usual. When this is to be an external process, the parton-level event configuration and
the event weight is found by a call from PYEVNT to UPEVNT.

CALL UPEVNT

Purpose:

Note :

routine to be provided by you when you want to implement external processes,
wherein the contents of the HEPEUP common block are set. This information
specifies the next parton-level event, and some additional event information,
see further below. How UPEVNT is expected to solve its task depends on the
model selected in IDWTUP, see above. Specifically, note that the process type
IDPRUP has already been selected for some IDWTUP options (and then cannot
be overwritten), while it remains to be chosen for others.

a dummy copy of UPEVNT is distributed with the program, in order to avoid
potential problems with unresolved external references. This dummy should
not be linked when you supply your own UPEVNT routine.

INTEGER MAXNUP

PARAMETER (MAXNUP=500)

INTEGER NUP, IDPRUP,IDUP,ISTUP,MOTHUP, ICOLUP

DOUBLE PRECISION XWGTUP,SCALUP,AQEDUP,AQCDUP,PUP,VTIMUP,SPINUP
COMMON/HEPEUP/NUP, IDPRUP, XWGTUP , SCALUP, AQEDUP , AQCDUP, IDUP (MAXNUP) ,
&ISTUP (MAXNUP) ,MOTHUP (2,MAXNUP) , ICOLUP (2,MAXNUP) ,PUP (5,MAXNUP) ,
&VTIMUP (MAXNUP) , SPINUP (MAXNUP)

Purpose :

MAXNUP :

NUP

IDPRUP :

to contain information on the latest external process generated in UPEVNT.
A part is one-of-a-kind numbers, like the event weight, but the bulk of the
information is a listing of incoming and outgoing particles, with history, colour,
momentum, lifetime and spin information.
the maximum number of particles that can be specified by the external process.
The maximum of 500 is more than PYTHIA is set up to handle. By default,
MSTP(126) = 100, at most 96 particles could be specified, since 4 additional
entries are needed in PYTHIA for the two beam particles and the two initiators
of initial-state radiation. If this default is not sufficient, MSTP (126) would have
to be increased at the beginning of the run.
the number of particle entries in the current parton-level event, stored in the
NUP first entries of the IDUP, ISTUP, MOTHUP, ICOLUP, PUP, VTIMUP and SPINUP
arrays.
The special value NUP = 0 is used to denote the case where UPEVNT is unable
to provide an event, at least of the type requested by PYEVNT, e.g. because all
events available in a file have already been read. For such an event also the
error flag MSTI(51) = 1 instead of the normal = 0.
the identity of the current process, as given by the LPRUP codes.
When IDWTUP = +1 or £2, IDPRUP is selected by PYEVNT and already set when
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entering UPEVNT. Then UPEVNT has to provide an event of the specified process
type, but cannot change IDPRUP. When IDWTUP = +3 or 44, UPEVNT is free to
select the next process, and then should set IDPRUP accordingly.

XWGTUP : the event weight. The precise definition of XWGTUP depends on the value of the
IDWTUP master switch. For IDWTUP = 1 or = 4 it is a dimensional quantity, in
pb, with a mean value converging to the total cross section of the respective
process. For IDWTUP = 2 the overall normalization is irrelevant. For IDWTUP
= 3 only the value +1 is allowed. For negative IDWTUP also negative weights
are allowed, although positive and negative weights cannot appear mixed in
the same process for IDWTUP = -1 or = -2.

SCALUP : scale @ of the event, as used in the calculation of parton distributions (fac-
torization scale). If the scale has not been defined, this should be denoted by
using the value -1.

In PYTHIA, this is input to PARI(21) - PARI(26) (and internally VINT(51) -
VINT(56)) When SCALUP is non-positive, the invariant mass of the parton-level
event is instead used as scale. Either of these comes to set the maximum vir-
tuality in the initial-state parton showers. The same scale is also used for the
first final-state shower, i.e. the one associated with the hard scattering. As in
internal events, PARP(67) and PARP(71) offer multiplicative factors, whereby
the respective initial- or final-state showering Q2 scale can be modified rel-
ative to the scale above. Any subsequent final-state showers are assumed to
come from resonance decays, where the resonance mass always sets the scale.
Since SCALUP is not directly used inside PYTHIA to evaluate parton densities,
its role as regulator of parton-shower activity may be the more important one.

AQEDUP : the QED coupling e, used for this event. If ag, has not been defined, this
should be denoted by using the value -1.

In PyYTHIA, this value is stored in VINT(57). It is not used anywhere, however.

AQCDUP : the QCD coupling ay used for this event. If oy has not been defined, this
should be denoted by using the value -1.

In PYTHIA, this value is stored in VINT (58). It is not used anywhere, however.

IDUP(i) : particle identity code, according to the PDG convention, for particle i. As an
extension to this standard, IDUP(i) = 0 can be used to designate an interme-
diate state of undefined (and possible non-physical) character, e.g. a subsystem
with a mass to be preserved by parton showers.

In the PYTHIA event record, this corresponds to the KF = K(I,2) code. But
note that, here and in the following, the positions i in HEPEUP and I in PYJETS
are likely to be different, since PYTHIA normally stores more information in
the beginning of the event record. Since K(I,2) = 0 is forbidden, the IDUP (i)
= 0 code is mapped to K(I,2) = 90.
ISTUP(i) : status code of particle 1.
= -1 : an incoming particle of the hard-scattering process.
In PYTHIA, currently it is presumed that the first two particles, i = 1
and = 2, are of this character, and none of the others. If this is not the
case, the HEPEUP record will be rearranged to put such entries first. If
the listing is still not acceptable after this, the program execution will
stop. This is a restriction relative to the standard, which allows more
possibilities. It is also presumed that these two particles are given with
vanishing masses and parallel to the respective incoming beam direction,
i.e. £ = p, for the first and £ = —p, for the second. The assignment of
spacelike virtualities and nonvanishing p,’s from initial-state radiation
and primordial k£, ’s is the prerogative of PYTHIA.
=1 : an outgoing final-state particle.
Such a particle can, of course, be processed further by PYTHIA, to add
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showers and hadronization, or perform decays of any remaining reso-
nances.

an intermediate resonance, whose mass should be preserved by parton
showers. For instance, in a process such as ete™ — Z°h" — qgbb, the
7% and h® should both be flagged this way, to denote that the qq and bb
systems should have their individual masses preserved. In a more com-
plex example, di — W~ Z% — (77, qqg, both the W~ and Z° particles
and the W~Z° pseudoparticle (with IDUP(i) = 0) could be given with
status 2.

Often mass preservation is correlated with colour singlet subsystems, but
this need not be the case. In ete™ — tt — bW bW~ the b and b would
be in a colour singlet state, but not with a preserved mass. Instead the
t = bWT and t = bW~ masses would be preserved, i.e. when b radiates
b — bg the recoil is taken by the W*. Exact mass preservation also by
the hadronization stage is only guaranteed for colour singlet subsystems,
however, at least for string fragmentation, since it is not possible to de-
fine a subset of hadrons that uniquely belong only with a single coloured
particle.

The assignment of intermediate states is not always quantum mechan-
ically well-defined. For instance, ete™ — pu~pty, v, can proceed both
through a WW~ and a Z°Z° intermediate state, as well as through other
graphs, which can interfere with each other. It is here the responsibility
of the matrix-element-generator author to pick one of the alternatives,
according to some convenient recipe. One option might be to perform
two calculations, one complete to select the event kinematics and calcu-
late the event weight, and a second with all interference terms neglected
to pick the event history according to the relative weight of each graph.
Often one particular graph would dominate, because a certain pairing of
the final-state fermions would give invariant masses on or close to some
resonance peaks.

In PyTHIA, the identification of an intermediate resonance is not only
a matter of preserving a mass, but also of improving the modelling of
the final-state shower evolution, since matrix-element-correction factors
have been calculated for a variety of possible resonance decays and im-
plemented in the respective parton shower description, see subsection
10.2.6.

an intermediate resonance, given for documentation only, without any
demand that the mass should be preserved in subsequent showers.

In PyTHIA, currently particles defined with this option are not treated
any differently from the ones with = 2.

an intermediate space-like propagator, defining an z and a @2, in the
Deeply Inelastic Scattering terminology, which should be preserved.

In PYTHIA, currently this option is not defined and should not be used.
If it is, the program execution will stop.

an incoming beam particle at time t = —oo. Such beams are not required
in most cases, since the HEPRUP common block normally contains the
information. The exceptions are studies with non-collinear beams and
with varying-energy beams (e.g. from beamstrahlung, subsection 7.1.3),
where HEPRUP does not supply sufficient flexibility. Information given
with = -9 overwrites the one given in HEPRUP.

This is an optional part of the standard, since it may be difficult to
combine with some of the IDWTUP options.

Currently it is not recognized by PyTHIA. If it is used, the program
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execution will stop.

MOTHUP(1,i), MOTHUP(2,i) : position of the first and last mother of particle i. Decay
products will normally have only one mother. Then either MOTHUP(2,1i) = 0
or MOTHUP(2,i) = MOTHUP(1,i). Particles in the outgoing state of a 2 — n
process have two mothers. This scheme does not limit the number of mothers,
so long as these appear consecutively in the listing, but in practice there will
likely never be more than two mothers per particle.

As has already been mentioned for ISTUP(i) = 2, the definition of history is
not always unique. Thus, in a case like eTe™ — putu~ v, proceeding via an
intermediate v*/Z°, the squared matrix element contains an interference term
between initial- and final-state emission of the photon. This ambiguity has to
be resolved by the matrix-elements-based generator.

In PyTHIA, only information on the first mother survives into K(I,3). This is
adequate for resonance decays, while particles produced in the primary 2 — n
process are given mother code 0, as is customary for internal processes. It
implies that two particles are deemed to have the same mothers if the first one
agrees; it is difficult to conceive of situations where this would not be the case.
Furthermore, it is assumed that the MOTHUP(1,i) < i, i.e. that mothers are
stored ahead of their daughters, and that all daughters of a mother are listed
consecutively, i.e. without other particles interspersed. If this is not the case,
the HEPEUP record will be rearranged so as to adhere to these principles.
PyTHIA has a limit of at most 80 particles coming from the same mother,
for the final-state parton shower algorithm to work. In fact, the shower is
optimized for a primary 2 — 2 process followed by some sequence of 1 — 2
resonance decays. Then colour coherence with the initial state, matrix-element
matching to gluon emission in resonance decays, and other sophisticated fea-
tures are automatically included. By contrast, the description of emission in
systems with three or more partons is less sophisticated. Apart from problems
with the algorithm itself, more information would be needed to do a good job
than is provided by the standard. Specifically, there is a significant danger
of double counting or gaps between the radiation already covered by matrix
elements and the one added by the shower. The omission from HEPEUP of in-
termediate resonances known to be there, so that e.g. two consecutive 1 — 2
decays are bookkept as a single 1 — 3 branching, is a simple way to reduce
the reliability of your studies!

ICOLUP(1,i), ICOLUP(2,i) : integer tags for the colour flow lines passing through the
colour and anticolour, respectively, of the particle. Any particle with colour
(anticolour), such as a quark (antiquark) or gluon, will have the first (second)
number nonvanishing.

The tags can be viewed as a numbering of different colours in the No — oo limit
of QCD. Any nonzero integer can be used to represent a different colour, but
the standard recommends to stay with positive numbers larger than MAXNUP
to avoid confusion between colour tags and the position labels i of particles.

The colour and anticolour of a particle is defined with the respect to the phys-
ical time ordering of the process, so as to allow a unique definition of colour
flow also through intermediate particles. That is, a quark always has a non-
vanishing colour tag ICOLUP(1,1i), whether it is in the initial, intermediate
or final state. A simple example would be qq — tt — bWTbW ™, where the
same colour label is to be used for the g, the t and the b. Correspondingly,
the q, t and b share another colour label, now stored in the anticolour position
ICOLUP(2,1).

The colour label in itself does not distinguish between the colour or the an-
ticolour of a given kind; that information appears in the usage either of the
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PUP(1,1),

VTIMUP (i)

SPINUP (i)

ICOLUP(1,i) or of the ICOLUP(2,1i) position for the colour or anticolour, re-
spectively. Thus, in a W™ — ud decay, the u and d would share the same
colour label, but stored in ICOLUP(1,1i) for the u and in ICOLUP(2,1) for the
d.

In general, several colour flows are possible in a given subprocess. This leads
to ambiguities, of a character similar to the ones for the history above, and as
is discussed in subsection 8.2.1. Again it is up to the author of the matrix-
elements-based generator to find a sensible solution. It is useful to note that
all interference terms between different colour flow topologies vanish in the
N¢ — oo limit of QCD. One solution would then be to use a first calculation
in standard QCD to select the momenta and find the weight of the process,
and a second with Nz — 0o to pick one specific colour topology according to
the relative probabilities in this limit.

The above colour scheme also allows for baryon number violating processes.
Such a vertex would appear as ‘dangling’ colour lines, when the ICOLUP and
MOTHUP information is correlated. For instance, in @ — dd the 1 inherits an
existing colour label, while the two d’s are produced with two different new
labels.

Several examples of colour assignments, both with and without baryon number
violation, are given in [Boo0O1].

In PyTHIA, baryon number violation is not yet implemented as part of the
external-process machinery (but exists for internal processes, including inter-
nally handled decays of resonances provided externally). It will require sub-
stantial extra work to lift this restriction, and this is not imminent.

PUP(2,i), PUP(3,i), PUP(4,i), PUP(5,1i) : the particle momentum vec-
tor (pu, py, P2, £, m), with units of GeV. A spacelike virtuality is denoted by a
negative sign on the mass.

Apart from the index order, this exactly matches the P momentum conventions
in PYJETS.

PyTHIA is forgiving when it comes to using other masses than its own, e.g.
for quarks. Thus the external process can be given directly with the my, used
in the calculation, without any worry how this matches the PyTHIA default.
However, remember that the two incoming particles with ISTUP(i) = -1 have
to be massless.

: invariant lifetime ¢7 in mm, i.e. distance from production to decay. Once

the primary vertex has been selected, the subsequent decay vertex positions
in space and time can be constructed step by step, by also making use of the
momentum information. Propagation in vacuum, without any bending e.g. by
magnetic fields, has to be assumed.
This exactly corresponds to the V(I,5) component in PYJETS. Note that it is
used in PYTHIA to track colour singlet particles through distances that might
be observable in a detector. It is not used to trace the motion of coloured par-
tons at fm scales, through the hadronization process. Also note that PyTHIA
will only use this information for intermediate resonances, not for the initial-
and final-state particles. For instance, for an undecayed 77, the lifetime is
selected as part of the 7~ decay process, not based on the VTIMUP (i) value.

: cosine of the angle between the spin vector of a particle and its three-
momentum, specified in the lab frame, i.e. the frame where the event as a
whole is defined. This scheme is neither general nor complete, but it is chosen
as a sensible compromise.

The main foreseen application is 7’s with a specific helicity. Typically a rel-
ativistic 77 (71) coming from a W~ (W™) decay would have helicity and
SPINUP(i) = —1 (41). This could be changed by the boost from the W rest
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frame to the lab frame, however. The use of a real number, rather than an
integer, allows for an extension to the non-relativistic case.
Particles which are unpolarized or have unknown polarization should be given
SPINUP(i) = 9.
Explicit spin information is not used anywhere in PYTHIA. It is implicit in
many production and decay matrix elements, which often contain more cor-
relation information than could be conveyed by the simple spin numbers dis-
cussed here. Correspondingly, it is to be expected that the external generator
already performed the decays of the W’s; the Z’s and the other resonances,
so as to include the full spin correlations. If this is not the case, such reso-
nances will normally be decayed isotropically. Some correlations could appear
in decay chains: the PYTHIA decay t — bW is isotropic, but the subsequent
W+ — qiq, decay contains implicit W helicity information from the t decay.
Also 7 decays performed by PYTHIA would be isotropic. An interface routine
PYTAUD (see subsection 14.2) can be used to link to external 7 decay genera-
tors, but is based on defining the 7 in the rest frame of the decay that produces
it, and so is not directly applicable here. Eventually, it will be rewritten to
make use of the SPINUP (i) information. In the meantime, and of course also
afterwards, a valid option is to perform the 7 decays yourself before passing
‘parton-level” events to PYTHIA.

One auxiliary routine exists, that formally is part of the PyTHIA package, but could

be used by any generator:

SUBROUTINE PYUPRE : called immediately after UPEVNT has been called to provide a user-
process event. It will rearrange the contents of the HEPEUP common block so
that afterwards the two incoming partons appear in lines 1 and 2, so that all
mothers appear ahead of their daughters, and so that the daughters of a decay
are listed consecutively. Such an order can thereby be presumed to exist in the
subsequent parsing of the event. If the rules already are obeyed, the routine
does not change anything.

9.9.3 An example

To exemplify the above discussion, consider the explicit case of qq or gg — tt —
bWTbW~ — bqiq, bqsq,. These two processes are already available in PYTHIA, but
without full spin correlations. One might therefore wish to include them from some ex-
ternal generator. A physics analysis would then most likely involve angular correlations
intended to set limits on (or reveal traces of) anomalous couplings. However, so as to
give a simple self-contained example, instead consider the analysis of the charged mul-
tiplicity distribution. This actually offers a simple first cross-check between the internal
and external implementations of the same process. The main program might then look
something like

IMPLICIT DOUBLE PRECISION(A-H, 0-Z)
IMPLICIT INTEGER(I-N)

C...User process event common block.

INTEGER MAXNUP

PARAMETER (MAXNUP=500)

INTEGER NUP, IDPRUP, IDUP, ISTUP,MOTHUP,ICOLUP

DOUBLE PRECISION XWGTUP,SCALUP,AQEDUP,AQCDUP,PUP,VTIMUP,SPINUP
COMMON/HEPEUP/NUP , IDPRUP, XWGTUP, SCALUP, AQEDUP, AQCDUP , IDUP (MAXNUP) ,
&ISTUP (MAXNUP) ,MOTHUP (2,MAXNUP) , ICOLUP (2,MAXNUP) ,PUP (5,MAXNUP) ,
&VTIMUP (MAXNUP) , SPINUP (MAXNUP)

SAVE /HEPEUP/
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C..

. .PYTHIA common block.

COMMON/PYJETS/N,NPAD, K (4000,5) ,P(4000,5) ,V(4000,5)
SAVE /PYJETS/

..Initialize.

CALL PYINIT(’USER’,’ ’,’ ’,0DO)

..Book histogram. Reset event counter.

CALL PYBOOK(1,’Charged multiplicity’,100,-1D0,199D0)
NACC=0

. .Event loop; check that not at end of run; list first events.

DO 100 IEV=1,1000
CALL PYEVNT
IF(NUP.EQ.0) GOTO 110
NACC=NACC+1
IF(IEV.LE.3) CALL PYLIST(7)
IF(IEV.LE.3) CALL PYLIST(2)

..Analyze event; end event loop.

CALL PYEDIT(3)
CALL PYFILL(1,DBLE(N),1DO)

100 CONTINUE

.Statistics and histograms.
110 CALL PYSTAT(1)

CALL PYFACT(1,1D0/DBLE(NACC))
CALL PYHIST

END

There PYINIT is called with *USER’ as first argument, implying that the rest is dummy.
The event loop itself looks fairly familiar, but with two additions. One is that NUP is
checked after each event, since NUP = 0 would signal a premature end of the run, with
the external generator unable to return more events. This would be the case e.g. if events
have been stored on file, and the end of this file is reached. The other is that CALL
PYLIST(7) can be used to list the particle content of the HEPEUP common block (with
some information omitted, on vertices and spin), so that one can easily compare this input
with the output after PYTHIA processing, CALL PYLIST(2). An example of a PYLIST(7)
listing would be

Event listing of user process at input (simplified)

I IST ID Mothers Colours p_x pP_y p_z E

1-1 21 0 O 101 109 0.000 0.000 269.223 269.223
2-1 21 0 0 109 102 0.000 0.000 -225.566 225.566
3 2 6 1 2 101 0 72.569 153.924 -10.554 244.347
4 2 -6 1 2 0 102 -72.569 -1563.924 54.211 250.441
5 1 5 3 0 101 0 56.519 33.343 53.910 85.045
6 2 24 3 O 0 0 16.050 120.581 -64.464 159.302
7 1 -5 4 0 0 102 44.127 -60.882  25.507  79.527
8 2 -24 4 O 0 0 -116.696 -93.042 28.705 170.914
9 1 2 6 0 103 0O -8.667 11.859 16.063 21.766
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10 1 -1 6 O 0 103 24.717 108.722 -80.527 137.536 0.000
1 1 -2 8 0 0 104 -33.709 -22.471 -26.877 48.617 0.000
12 1 1 8 0 104 0 -82.988 -70.571 55.582 122.297 0.000

Note the reverse listing of ID(UP) and IST(UP) relative to the HEPEUP order, to have
better agreement with the PYJETS one. (The ID column is wider in real life, to allow for
longer codes, but has here been reduced to fit the listing onto the page.)

The corresponding PYLIST(2) listing of course would be considerably longer, contain-
ing a complete event as it does. Also the particles above would there appear boosted
by the effects of initial-state radiation and primordial k&, ; copies of them further down
in the event record would also include the effects of final-state radiation. The full story
is available with MSTP(125)=2, while the default listing omits some of the intermediate
steps.

The PYINIT call will generate a call to the user-supplied routine UPINIT. It is here
that we need to specify the details of the generation model. Assume, for instance that
qq- and gg-initiated events have been generated in two separate runs for Tevatron Run
IT, with weighted events stored in two separate files. By the end of each run, cross section
and maximum weight information has also been obtained, and stored on separate files.
Then UPINIT could look like

SUBROUTINE UPINIT

C...Double precision and integer declarations.
IMPLICIT DOUBLE PRECISION(A-H, 0-Z)
IMPLICIT INTEGER(I-N)

C...User process initialization common block.

INTEGER MAXPUP

PARAMETER (MAXPUP=100)

INTEGER IDBMUP,PDFGUP,PDFSUP,IDWTUP,NPRUP,LPRUP

DOUBLE PRECISION EBMUP,XSECUP,XERRUP,XMAXUP
COMMON/HEPRUP/IDBMUP(2) ,EBMUP(2) ,PDFGUP(2) ,PDFSUP(2),
&IDWTUP,NPRUP,XSECUP (MAXPUP) ,XERRUP (MAXPUP) , XMAXUP (MAXPUP) ,
&LPRUP (MAXPUP)

SAVE /HEPRUP/

C....Pythia common block - needed for setting PDF’s; see below.
COMMON/PYPARS/MSTP (200) ,PARP (200) ,MSTI (200) ,PARI (200)
SAVE /PYPARS/

C...Set incoming beams: Tevatron Run II.
IDBMUP (1)=2212
IDBMUP(2)=-2212
EBMUP (1)=1000D0
EBMUP (2)=1000D0

..5et PDF’s of incoming beams: CTEQ 5L.
..Note that Pythia will not look at PDFGUP and PDFSUP.
PDFGUP(1)=4
PDFSUP (1)=46
PDFGUP (2) =PDFGUP (1)
PDFSUP (2)=PDFSUP (1)

aQQ

C...Set use of CTEQ 5L in internal Pythia code.
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MSTP(51)=7

..If you want Pythia to use PDFLIB, you have to set it by hand.
..(You also have to ensure that the dummy routines
. .PDFSET, STRUCTM and STRUCTP in Pythia are not linked.)

MSTP (52) =2

MSTP (51)=1000*PDFGUP (1) +PDFSUP (1)

QO

Q

..Decide on weighting strategy: weighted on input, cross section known.
IDWTUP=2

C...Number of external processes.
NPRUP=2

C...Set up q gbar -> t tbar.
OPEN(21,FILE="qqtt.info’ ,FORM="unformatted’ ,ERR=100)
READ(21,ERR=100) XSECUP(1),XERRUP(1),XMAXUP(1)
LPRUP(1)=661
OPEN(22,FILE=’qqtt.events’ ,FORM="unformatted’ ,ERR=100)

C...Set up g g -> t tbar.
OPEN(23,FILE="ggtt.info’ ,FORM="unformatted’ ,ERR=100)
READ (23,ERR=100) XSECUP(2) ,XERRUP(2) ,XMAXUP(2)
LPRUP(2)=662
OPEN(24,FILE="ggtt.events’ ,FORM="unformatted’ ,ERR=100)

RETURN
C...Stop run if file operations fail.
100 WRITE(*,*) ’Error! File open or read failed. Program stopped.’
STOP

END

Here unformatted read/write is used to reduce the size of the event files, but at the price of
a platform dependence. Formatted files are preferred if they are to be shipped elsewhere.
The rest should be self-explanatory.

Inside the event loop of the main program, PYEVNT will call UPEVNT to obtain the next
parton-level event. In its simplest form, only a single READ statement would be necessary
to read information on the next event, e.g. what is shown in the event listing earlier in
this subsection, with a few additions. Then the routine could look like

SUBROUTINE UPEVNT

C...Double precision and integer declaratiomns.
IMPLICIT DOUBLE PRECISION(A-H, 0-Z)
IMPLICIT INTEGER(I-N)

C...User process event common block.
INTEGER MAXNUP
PARAMETER (MAXNUP=500)
INTEGER NUP, IDPRUP, IDUP, ISTUP,MOTHUP,ICOLUP
DOUBLE PRECISION XWGTUP,SCALUP,AQEDUP,AQCDUP,PUP,VTIMUP,SPINUP
COMMON/HEPEUP/NUP , IDPRUP , XWGTUP , SCALUP , AQEDUP , AQCDUP, IDUP (MAXNUP) ,
&ISTUP (MAXNUP) ,MOTHUP (2,MAXNUP) , ICOLUP(2,MAXNUP) ,PUP(5,MAXNUP) ,
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&VTIMUP (MAXNUP) ,SPINUP (MAXNUP)
SAVE /HEPEUP/

C...Pick file to read from, based on requested event type.
IUNIT=22
IF (IDPRUP.EQ.662) IUNIT=24

C...Read event from this file. (Except that NUP and IDPRUP are known.)
NUP=12
READ(IUNIT,ERR=100,END=100) XWGTUP,SCALUP,AQEDUP,AQCDUP,
& (IDUP(I),ISTUP(I),MOTHUP(1,I),MOTHUP(2,I),ICOLUP(1,I),
&ICOLUP(2,I), (PUP(J,I),J=1,5) ,VTIMUP(I),SPINUP(I),I=1,NUP)

C...Return, with NUP=0 if read failed.
RETURN
100 NUP=0
RETURN
END

However, in reality one might wish to save disk space by not storing redundant informa-
tion. The XWGTUP and SCALUP numbers are vital, while AQEDUP and AQCDUP are purely
informational and can be omitted. In a gg — tt — bWTbhW~ — bq;q, bqsq, event,
only the q1, G5, q3 and @, flavours need be given, assuming that the particles are always
stored in the same order. For a qq initial state, the q flavour should be added to the list.
The ISTUP, MOTHUP and ICOLUP information is the same in all events of a given process,
except for a twofold ambiguity in the colour flow for gg initial states. All VTIMUP vanish
and the SPINUP are uninteresting since spins have already been taken into account by the
kinematics of the final fermions. (It would be different if one of the W’s decayed leptoni-
cally to a 7.) Only the PUP values of the six final fermions need be given, since the other
momenta and masses can be reconstructed from this, remembering that the two initial
partons are massless and along the beam pipe. The final fermions are on the mass shell,
so their masses need not be stored event by event, but can be read from a small table.
The energy of a particle can be reconstructed from its momentum and mass. Overall
transverse momentum conservation removes two further numbers. What remains is thus
5 integers and 18 real numbers, where the reals could well be stored in single precision.
Of course, the code needed to unpack information stored this way would be lengthy but
trivial. Even more compact storage strategies could be envisaged, e.g. only to save the
weight and the seed of a dedicated random-number generator, to be used to generate the
next parton-level event. It is up to you to find the optimal balance between disk space
and coding effort.

9.9.4 Further comments

This section contains additional information on a few different topics: cross section in-
terpretation, negative-weight events, relations with other PYTHIA switches and routines,
and error conditions.

In several IDWTUP options, the XWGTUP variable is supposed to give the differential
cross section of the current event, times the phase-space volume within which events are
generated, expressed in picobarns. (Converted to millibarns inside PYTHIA.) This means
that, in the limit that many events are generated, the average value of XWGTUP gives
the total cross section of the simulated process. Of course, the tricky part is that the
differential cross section usually is strongly peaked in a few regions of the phase space,
such that the average probability to accept an event, (XWGTUP)/XMAXUP (i) is small. It
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may then be necessary to find a suitable set of transformed phase-space coordinates, for
which the correspondingly transformed differential cross section is better behaved.

To avoid confusion, here is a more formal version of the above paragraph. Call dX
the differential phase space, e.g. for a 2 — 2 process dX = dx; dxs dt, where z; and o
are the momentum fractions carried by the two incoming partons and ¢ the Mandelstam
variable of the scattering (see subsection 7.2). Call do/dX the differential cross section
of the process, e.g. for 2 — 2: do/dX = ¥,; fi(z1,Q?) fi(22, Q%) d6;;/di, ie. the prod-
uct of parton distributions and hard-scattering matrix elements, summed over all allowed
incoming flavours ¢ and j. The physical cross section that one then wants to generate
is 0 = [(do/dX)dX, where the integral is over the allowed phase-space volume. The
event generation procedure consists of selecting an X uniformly in dX and then evalu-
ating the weight do/dX at this point. XWGTUP is now simply XWGTUP= do/dX [dX] i.e.
the differential cross section times the considered volume of phase space. Clearly, when
averaged over many events, XWGTUP will correctly estimate the desired cross section. If
XWGTUP fluctuates too much, one may try to transform to new variables X', where events
are now picked accordingly to dX’ and XWGTUP= do/dX’ [ dX".

A warning. It is important that X is indeed uniformly picked within the allowed phase
space, alternatively that any Jacobians are properly taken into account. For instance, in
the case above, one approach would be to pick z1, w2 and ¢ uniformly in the ranges
0<z1<1,0< 29 <1, and —s < t < 0, with full phase space volume [dX = s. The
cross section would only be non-vanishing inside the physical region given by —sz 2y < £
(in the massless case), i.e. Monte Carlo efficiency is likely to be low. However, if one were
to choose ¢ values only in the range —§ < ¢ < 0, small § values would be favoured, since
the density of selected t values would be larger there. Without the use of a compensating
Jacobian §/s, an incorrect answer would be obtained. Alternatively, one could start out

with a phase space like dX = dz dzy d(cos é), where the limits decouple. Of course, the

cos 0 variable can be translated back into a ¢, which will then always be in the desired
range —§ < t < 0. The transformation itself here gives the necessary Jacobian.

At times, it is convenient to split a process into a discrete set of subprocesses for the
parton-level generation, without retaining these in the IDPRUP classification. For instance,
the cross section above contains a summation over incoming partons. An alternative
would then have been to let each subprocess correspond to one unique combination of
incoming flavours. When an event of process type i is to be generated, first a specific
subprocess ik is selected with probability f%, where Y, f%* = 1. For this subprocess an
XWGTUP* is generated as above, except that there is no longer a summation over incoming
flavours. Since only a fraction f% of all events now contain this part of the cross section,
a compensating factor 1/f%* is introduced, i.e. XWGTUP=XWGTUP*/ fi*. Further, one has to
define XMAXUP (i) = max; XMAXUP*/f¥* and XSECUP(i)= Y, XSECUP*. The generation
efficiency will be maximized for the f% coefficients selected proportional to XMAXUP* | but
this is no requirement.

The standard allows external parton-level events to come with negative weights, unlike
the case for internal PYTHIA processes. In order to avoid indiscriminate use of this option,
some words of caution are in place. In next-to-leading-order calculations, events with
negative weights may occur as part of the virtual corrections. In any physical observable
quantity, the effect of such events should cancel against the effect of real events with
one more parton in the final state. For instance, the next-to-leading order calculation of
gluon scattering contains the real process gg — ggg, with a positive divergence in the soft
and collinear regions, while the virtual corrections to gg — gg are negatively divergent.
Neglecting the problems of outgoing gluons collinear with the beams, and those of soft
gluons, two nearby outgoing gluons in the gg — ggg process can be combined into one
effective one, such that the divergences can be cancelled.

If rather widely separated gluons can be combined, the remaining negative contribu-
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tions are not particularly large. Different separation criteria could be considered; one

example would be AR = \/ (An)?2 + (Ap)? ~ 1. The recombination of well separated
partons is at the price of an arbitrariness in the choice of clustering algorithm, when
two gluons of nonvanishing invariant mass are to be combined into one massless one, as
required to be able to compare with the kinematics of the massless gg — gg process when
performing the divergence cancellations. Alternatively, if a smaller AR cut is used, where
the combining procedure is less critical, there will be more events with large positive and
negative weights that are to cancel.

Without proper care, this cancellation could easily be destroyed by the subsequent
showering description, as follows. The standard for external processes does not provide
any way to pass information on the clustering algorithm used, so the showering routine
will have to make its own choice what region of phase space to populate with radiation.
One choice could be to allow a cone defined by the nearest colour-connected parton (see
subsection 10.1.3 for a discussion). There could then arise a significant mismatch in
shower description between events where two gluons are just below or just above the AR
cut for being recombined, equivalently between gg — gg and gg — ggg events. Most of
the phase space may be open for the former, while only the region below AR may be it
for the latter. Thus the average ‘two-parton’ events may end up containing significantly
more jet activity than the corresponding ‘three-parton’ ones. The smaller the AR cut,
the more severe the mismatch, both on an event-by-event basis and in terms of the event
rates involved.

One solution would be to extend the standard also to specify which clustering algo-
rithm has been used in the matrix-element calculation, and with what parameter values.
Any shower emission that would give rise to an extra jet, according to this algorithm,
would be vetoed. If a small AR cut is used, this is almost equivalent to allowing no
shower activity at all. (That would still leave us with potential mismatch problems in the
hadronization description. Fortunately the string fragmentation approach is very pow-
erful in this respect, with a smooth transition between two almost parallel gluons and a
single one with the full energy [Sj684].) But we know that the unassisted matrix-element
description cannot do a good job of the internal structure of jets on an event-by-event
basis, since multiple-gluon emission is the norm in this region. Therefore a AR ~ 1 will
be required, to let the matrix elements describe the wide-angle emission and the showers
the small-angle one. This again suggests a picture with only a small contribution from
negative-weight events. In summary, the appearance of a large fraction of negative-weight
events should be a sure warning sign that physics is likely to be incorrectly described.

The above example illustrates that it may, at times, be desirable to sidestep the stan-
dard and provide further information directly in the PYTHIA common blocks. (Currently
there is no exact match to the clustering task mentioned above, but there are a few sim-
pler ways to intervene in the shower evolution.) Then it is useful to note that, apart from
the hard-process generation machinery itself, the external processes are handled almost
exactly as the internal ones. Thus essentially all switches and parameter values related to
showers, underlying events and hadronization can be modified at will. This even applies
to alternative listing modes of events and history pointers, as set by MSTP(128). Also
some of the information on the hard scattering is available, such as MSTI(3), MSTI(21)
- MSTI(26), and PARI(33) - PARI(38). Before using them, however, it is prudent to
check that your variables of interest do work as intended for the particular process you
study. Several differences do remain between internal and external processes, in particular
related to final-state showers and resonance decays. For internal processes, the PYRESD
routine will perform a shower (if relevant) directly after each decay. A typical example
would be that a t — bW decay is immediately followed by a shower, which could change
the momentum of the W before it decays in its turn. For an external process, this decay
chain would presumably already have been carried out. When the equivalent shower to
the above is performed, it is therefore now necessary also to boost the decay products of
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the W. The special sequence of showers and boosts for external processes is administrated
by the PYADSH routine. Should the decay chain not have been carried out, e.g if HEPEUP
event record contains an undecayed Z°, then PYRESD will be called to let it decay. The
decay products will be visible also in the documentation section, as for internal processes.

You are free to make use of whatever tools you want in your UPINIT and UPEVNT
routines, and normally there would be little or no contact with the rest of PYTHIA, except
as described above. However, several PYTHIA tools can be used, if you so wish. One
attractive possibility is to use PYPDFU for parton-distribution-function evaluation. Other
possible tools could be PYR for random-number generation, PYALPS for «y evaluation,
PYALEM for evaluation of a running a.,,, and maybe a few more.

We end with a few comments on anomalous situations. As already described, you may
put NUP=0 inside UPEVNT, e.g. to signal the end of the file from which events are read. If
the program encounters this value at a return from UPEVNT, then it will also exit from
PYEVNT, without incrementing the counters for the number of events generated. It is then
up to you to have a check on this condition in your main event-generation loop. This you
do either by looking at NUP or at MSTI(51); the latter is set to 1 if no event was generated.

It may also happen that a parton-level configuration fails elsewhere in the PYEVNT
call. For instance, the beam-remnant treatment occasionally encounters situations it
cannot handle, wherefore the parton-level event is rejected and a new one generated.
This happens also with ordinary (not user-defined) events, and usually comes about as
a consequence of the initial-state radiation description leaving too little energy for the
remnant. If the same hard scattering were to be used as input for a new initial-state
radiation and beam-remnant attempt, it could then work fine. There is a possibility to
give events that chance, as follows. MSTI(52) counts the number of times a hard-scattering
configuration has failed to date. If you come in to UPEVNT with MSTI (52) non-vanishing,
this means that the latest configuration failed. So long as the contents of the HEPEUP
common block are not changed, such an event may be given another try. For instance, a
line

IF(MSTI(52) .GE.1.AND.MSTI(52).LE.4) RETURN

at the beginning of UPEVNT will give each event up to five tries; thereafter a new one
would be generated as usual. Note that the counter for the number of events is updated
at each new try. The fraction of failed configurations is given in the bottom line of the
PYSTAT (1) table.

The above comment only refers to very rare occurrences (less than one in a hundred),
which are not errors in a strict sense; for instance, they do not produce any error messages
on output. If you get warnings and error messages that the program does not understand
the flavour codes or cannot reconstruct the colour flows, it is due to faults of yours, and
giving such events more tries is not going to help.

9.10 Interfaces to Other Generators

In the previous section an approach to including external processes in PYTHIA was ex-
plained. While general enough, it may not always be the optimal choice. In particular, for
ete™ annihilation events one may envisage some standard cases where simpler approaches
could be pursued. A few such standard interfaces are described in this section.

In ete™ annihilation events, a convenient classification of electroweak physics is by the
number of fermions in the final state. Two fermions from Z° decay is LEP1 physics, four
fermions can come e.g. from WTW~ or Z°Z° events at LEP2, and at higher energies six
fermions are produced by three-gauge-boson production or top-antitop. Often interference
terms are non-negligible, requiring much more complex matrix-element expressions than
are normally provided in PYTHIA. Dedicated electroweak generators often exist, however,
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and the task is therefore to interface them to the generic parton showering and hadroniza-
tion machinery available in PYTHIA. In the LEP2 workshop [Kno96] one possible strategy
was outlined to allow reasonably standardized interfaces between the electroweak and the
QCD generators. The LU4FRM routine was provided for the key four-fermion case. This
routine is now included here, in slightly modified form, together with two new siblings for
two and six fermions. The former is trivial and included mainly for completeness, while
the latter is rather more delicate.

In final states with two or three quark-antiquark pairs, the colour connection is not
unique. For instance, a udud final state could either stem from a W*W~ or a Z°Z°
intermediate state, or even from interference terms between the two. In order to shower
and fragment the system, it is then necessary to pick one of the two alternatives, e.g.
according to the relative matrix element weight of each alternative, with the interference
term dropped. Some different such strategies are proposed as options below.

Note that here we discuss purely perturbative ambiguities. One can imagine colour
reconnection at later stages of the process, e.g. if the intermediate state indeed is WW—,
a soft-gluon exchange could still result in colour singlets utt and dd. We are then no longer
speaking of ambiguities related to the hard process itself but rather to the possibility of
nonperturbative effects. This is an interesting topic in itself, addressed in section 12.4.2
but not here.

The fermion-pair routines are not set up to handle QCD four-jet events, i.e. events of
the types qqgg and qqq'q (with q'q coming from a gluon branching). Such events are
generated in normal parton showers, but not necessarily at the right rate (a problem that
may be especially interesting for massive quarks like b). Therefore one would like to start
a QCD final-state parton shower from a given four-parton configuration. Already some
time ago, a machinery was developed to handle this kind of occurrences [And98a]. This
approach has now been adapted to PYTHIA, in a somewhat modified form, see section
10.2.7. The main change is that, in the original work, the colour flow was picked in a
separate first step (not discussed in the publication, since it is part of the standard 4-
parton configuration machinery of PYEEVT), which reduces the number of allowed qqgg
parton-shower histories. In the current implementation, more geared towards completely
external generators, no colour flow assumptions are made, meaning a few more possible
shower histories to pick between. Another change is that mass effects are better respected
by the z definition. The code contains one new user routine, PY4AJET, two new auxiliary
ones, PY4AJTW and PY4JTS, and significant additions to the PYSHOW showering routine.

CALL PY2FRM(IRAD,ITAU,ICOM)

Purpose: to allow a parton shower to develop and partons to hadronize from a two-
fermion starting point. The initial list is supposed to be ordered such that the
fermion precedes the antifermion. In addition, an arbitrary number of photons
may be included, e.g. from initial-state radiation; these will not be affected by
the operation and can be put anywhere. The scale for QCD (and QED) final-
state radiation is automatically set to be the mass of the fermion-antifermion
pair. (It is thus not suited for Bhabha scattering.)

IRAD : final-state QED radiation.
=0 : no final-state photon radiation, only QCD showers.
=1 : photon radiation inside each final fermion pair, also leptons, in addition
to the QCD one for quarks.
ITAU : handling of 7 lepton decay (where PyTHIA does not include spin effects, al-

though some generators provide the helicity information that would allow a
more sophisticated modelling).
=0 : 7’s are considered stable (and can therefore be decayed afterwards).
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7’s are allowed to decay.
place where information about the event (flavours, momenta etc.) is stored at

input and output.

in the HEPEVT common block (meaning that information is automatically
translated to PYJETS before treatment and back afterwards).

in the PYJETS common block. All fermions and photons can be given
with status code K(I,1)=1, flavour code in K(I,2) and five-momentum
(momentum, energy, mass) in P(I,J). The V vector and remaining com-
ponents in the K one are best put to zero. Also remember to set the total
number of entries N.

CALL PYAFRM(ATOTSQ,A1SQ,A2SQ,ISTRAT,IRAD,ITAU,ICOM)

Purpose: to allow a parton shower to develop and partons to hadronize from a four-

ATOTSQ :

A1SQ :

A23Q :

ISTRAT :

IRAD :

ITAU :

[

o

fermion starting point. The initial list of fermions is supposed to be ordered
in the sequence fermion (1) — antifermion (2) — fermion (3) — antifermion (4).
The flavour pairs should be arranged so that, if possible, the first two could
come from a W' and the second two from a W™ else each pair should have
flavours consistent with a Z°. In addition, an arbitrary number of photons may
be included, e.g. from initial-state radiation; these will not be affected by the
operation and can be put anywhere. Since the colour flow need not be unique,
three real and one integer numbers are providing further input. Once the colour
pairing is determined, the scale for final-state QCD (and QED) radiation is
automatically set to be the mass of the fermion-antifermion pair. (This is the
relevant choice for normal fermion pair production from resonance decay, but
is not suited e.g. for 4y processes dominated by small-t propagators.) The
pairing is also meaningful for QED radiation, in the sense that a four-lepton
final state is subdivided into two radiating subsystems in the same way. Only
if the event consists of one lepton pair and one quark pair is the information
superfluous.
total squared amplitude for the event, irrespective of colour flow.
squared amplitude for the configuration with fermions 1 + 2 and 3 + 4 as the
two colour singlets.
squared amplitude for the configuration with fermions 1 + 4 and 3 + 2 as the
two colour singlets.
the choice of strategy to select either of the two possible colour configurations.
Here 0 is supposed to represent a reasonable compromise, while 1 and 2 are
selected so as to give the largest reasonable spread one could imagine.

pick configurations according to relative probabilities A1SQ : A2SQ.

assign the interference contribution to maximize the 1 4+ 2 and 3 + 4

pairing of fermions.

assign the interference contribution to maximize the 1 4+ 4 and 3 + 2

pairing of fermions.
final-state QED radiation.

no final-state photon radiation, only QCD showers.

photon radiation inside each final fermion pair, also leptons, in addition

to the QCD one for quarks.
handling of 7 lepton decay (where PyTHIA does not include spin effects, al-
though some generators provide the helicity information that would allow a
more sophisticated modelling).

7’s are considered stable (and can therefore be decayed afterwards).

7’s are allowed to decay.
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ICOM :  place where information about the event (flavours, momenta etc.) is stored at
input and output.

=0 : in the HEPEVT common block (meaning that information is automatically
translated to PYJETS before treatment and back afterwards).
=1: in the PYJETS common block. All fermions and photons can be given

with status code K(I,1)=1, flavour code in K(I,2) and five-momentum
(momentum, energy, mass) in P(I,J). The V vector and remaining com-
ponents in the K one are best put to zero. Also remember to set the total
number of entries N.

Comment : Also colour reconnection phenomena can be studied with the PYAFRM rou-

tine. MSTP(115) can be used to switch between the scenarios, with default
being no reconnection. Other reconnection parameters also work as normally,
including that MSTI(32) can be used to find out whether a reconnection oc-
cured or not. In order for the reconnection machinery to work, the event record
is automatically complemented with information on the WHW~— or Z°Z° pair
that produced the four fermions, based on the rules described above.
We remind that the four first parameters of the PY4FRM call are supposed to
parameterize an ambiguity on the perturbative level of the process, which has
to be resolved before parton showers are performed. The colour reconnection
discussed here is (in most scenarios) occuring on the nonperturbative level,
after the parton showers.

CALL PY6FRM(P12,P13,P21,P23,P31,P32,PTOP,IRAD,ITAU,ICOM)

Purpose: to allow a parton shower to develop and partons to hadronize from a six-
fermion starting point. The initial list of fermions is supposed to be ordered
in the sequence fermion (1) — antifermion (2) — fermion (3) — antifermion (4)
— fermion (5) — antifermion (6). The flavour pairs should be arranged so that,
if possible, the first two could come from a Z° the middle two from a W+
and the last two from a W™; else each pair should have flavours consistent
with a Z°. Specifically, this means that in a tt event, the t decay products
would be found in 1 (b) and 3 and 4 (from the W decay) and the t ones in
2 (b) and 5 and 6 (from the W~ decay). In addition, an arbitrary number of
photons may be included, e.g. from initial-state radiation; these will not be
affected by the operation and can be put anywhere. Since the colour flow need
not be unique, further input is needed to specify this. The number of possible
interference contributions being much larger than for the four-fermion case, we
have not tried to implement different strategies. Instead six probabilities may
be input for the different pairings, that you e.g. could pick as the six possible
squared amplitudes, or according to some more complicated scheme for how
to handle the interference terms. The treatment of final-state cascades must
be quite different for top events and the rest. For a normal three-boson event,
each fermion pair would form one radiating system, with scale set equal to the
fermion-antifermion invariant mass. (This is the relevant choice for normal
fermion pair production from resonance decay, but is not suited e.g. for v~
processes dominated by small-t propagators.) In the top case, on the other
hand, the b (b) would be radiating with a recoil taken by the W (W~) in
such a way that the t (t) mass is preserved, while the W dipoles would radiate
as normal. Therefore you need also supply a probability for the event to be a
top one, again e.g. based on some squared amplitude.

P12, P13, P21, P23, P31, P32 : relative probabilities for the six possible pairings of
fermions with antifermions. The first (second) digit tells which antifermion
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PTOP :

IRAD :

ITAU :

ICOM :

[

the first (second) fermion is paired with, with the third pairing given by elim-
ination. Thus e.g. P23 means the first fermion is paired with the second an-
tifermion, the second fermion with the third antifermion and the third fermion
with the first antifermion. Pairings are only possible between quarks and lep-
tons separately. The sum of probabilities for allowed pairings is automatically
normalized to unity.
the probability that the configuration is a top one; a number between 0 and 1.
In this case, it is important that the order described above is respected, with
the b and b coming first. No colour ambiguity exists if the top interpretation
is selected, so then the P12 - P32 numbers are not used.
final-state QED radiation.

no final-state photon radiation, only QCD showers.

photon radiation inside each final fermion pair, also leptons, in addition

to the QCD one for quarks.
handling of 7 lepton decay (where PYTHIA does not include spin effects, al-
though some generators provide the helicity information that would allow a
more sophisticated modelling).

7’s are considered stable (and can therefore be decayed afterwards).

7’s are allowed to decay.
place where information about the event (flavours, momenta etc.) is stored at

input and output.

in the HEPEVT common block (meaning that information is automatically
translated to PYJETS before treatment and back afterwards).

in the PYJETS common block. All fermions and photons can be given
with status code K(I,1)=1, flavour code in K(I,2) and five-momentum
(momentum, energy, mass) in P(I,J). The V vector and remaining com-
ponents in the K one are best put to zero. Also remember to set the total
number of entries N.

CALL PY4JET (PMAX,IRAD,ICOM)

Purpose: to allow a parton shower to develop and partons to hadronize from a qqgg

PMAX :

or qqq'q original configuration. The partons should be ordered exactly as in-
dicated above, with the primary qq pair first and thereafter the two gluons
or the secondary q'q pair. (Strictly speaking, the definition of primary and
secondary fermion pair is ambiguous. In practice, however, differences in topo-
logical variables like the pair mass should make it feasible to have some sensible
criterion on an event by event basis.) Within each pair, fermion should precede
antifermion. In addition, an arbitrary number of photons may be included, e.g.
from initial-state radiation; these will not be affected by the operation and can
be put anywhere. The program will select a possible parton shower history
from the given parton configuration, and then continue the shower from there
on. The history selected is displayed in lines NOLD+1 to NOLD+6, where NOLD is
the N value before the routine is called. Here the masses and energies of inter-
mediate partons are clearly displayed. The lines NOLD+7 and NOLD+8 contain
the equivalent on-mass-shell parton pair from which the shower is started.

the maximum mass scale (in GeV) from which the shower is started in those
branches that are not already fixed by the matrix-element history. If PMAX
is set zero (actually below PARJ(82), the shower cutoff scale), the shower
starting scale is instead set to be equal to the smallest mass of the virtual
partons in the reconstructed shower history. A fixed PMAX can thus be used